skip to content

An Interdisciplinary Research Centre at the University of Cambridge
 

Cambridge experts awarded 2024 Academy of Medical Sciences Fellowships

Professor Nita Forouhi from the Medical Research Council (MRC) Epidemiology Unit and Professor Susan Gathercole from the MRC Cognition and Brain Sciences Unit join an esteemed Fellowship of over 1,400 researchers who have been recognised for their remarkable contributions to advancing biomedical and health sciences, ground-breaking research discoveries and translating developments into benefits for patients and wider society.

Professor Nita Forouhi is a clinical scientist whose research is focused on the link between diet, nutrition and the risk of diabetes, obesity and related disorders. She is Professor of Population Health and Nutrition and leads the Nutritional Epidemiology programme, which was awarded the Vice-Chancellor’s Best Impact Award in 2016. She frequently engages with the media to promote knowledge in the area of diet and health.

Professor Susan Gathercole is a cognitive psychologist with interests in memory and learning, including the causes of specific learning difficulties in children and how they might be overcome. Susan became a Fellow of the British Academy in 2014 and was awarded an OBE for services to psychology and education in 2016.

Professor Andrew Morris PMedSci, President of the Academy of Medical Sciences, said: “It is an honour to welcome these brilliant minds to our Fellowship. Our new Fellows lead pioneering work in biomedical research and are driving remarkable improvements in healthcare. We look forward to working with them, and learning from them, in our quest to foster an open and progressive research environment that improves the health of people everywhere through excellence in medical science.

“It is also welcoming to note that this year's cohort is our most diverse yet, in terms of gender, ethnicity and geography. While this progress is encouraging, we recognise that there is still much work to be done to truly diversify our Fellowship. We remain committed to our EDI goals and will continue to take meaningful steps to ensure our Fellowship reflects the rich diversity of the society we serve."

The new Fellows will be formally admitted to the Academy at a ceremony on Wednesday 18 September 2024.

Two Cambridge Fellows are among the new Academy of Medical Sciences Fellows announced today.

Academy of Medical Sciences Academy of Medical Sciences logo


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

“I feel like I’m Alice in Wonderland”: nightmares and ‘daymares’ could be early warning signs of autoimmune disease

Research in the University of Cambridge - Mon, 20/05/2024 - 23:30

The researchers argue that there needs to be greater recognition that these types of mental health and neurological symptoms can act as an early warning sign that an individual is approaching a ‘flare’, where their disease worsens for a period.

In a study published today in eClinicalMedicine, researchers surveyed 676 people living with lupus and 400 clinicians, as well as carrying out detailed interviews with 69 people living with systemic autoimmune rheumatic diseases (including lupus) and 50 clinicians. Lupus is an autoimmune inflammatory disease known for its effect on many organs including the brain.

In the study, the team also asked patients about the timing of 29 neurological and mental health symptoms (such as depression, hallucinations and loss of balance). In interviews, patients were also asked if they could list the order that symptoms usually occurred when their disease was flaring.

One of the more common symptoms reported was disrupted dream sleep, experienced by three in five patients, a third of whom reported this symptom appearing over a year before onset of lupus disease.

Just under one in four patients reported hallucinations, though for 85% of these the symptom did not appear until around the onset of disease or later. When the researchers interviewed the patients, however, they found that three in five lupus patients and one in three with other rheumatology-related conditions reported increasingly disrupted dreaming sleep – usually vivid and distressing nightmares – just before their hallucinations. These nightmares were often vivid and distressing, involving being attacked, trapped, crushed, or falling.

One patient from Ireland described their nightmares as: “Horrific, like murders, like skin coming off people, horrific…I think it’s like when I’m overwhelmed which could be the lupus being bad…So I think the more stress my body is under then the more vivid and bad the dreaming would be.”

The study interviewers found that using the term ‘daymares’ to talk about hallucinations often led to a ‘lightbulb’ moment for patients, and they felt that it was a less frightening and stigmatised word.

A patient from England said: “[When] you said that word daymare and as soon as you said that it just made sense, it’s like not necessarily scary, it’s just like you’ve had a dream and yet you’re sitting awake in the garden…I see different things, it’s like I come out of it and it’s like when you wake up and you can’t remember your dream and you’re there but you’re not there… it’s like feeling really disorientated, the nearest thing I can think of is that I feel like I’m Alice in Wonderland.”

Patients experiencing hallucinations were reluctant to share their experiences, and many specialists said they had never considered nightmares and hallucinations as being related to disease flares. Most said they would talk to their patients about nightmares and hallucinations in future, agreeing that recognising these early flare symptoms may provide an ‘early warning system’ enabling them to improve care and even reduce clinic times by averting flares at any earlier stage.

Lead author Dr Melanie Sloan from the Department of Public Health and Primary Care at the University of Cambridge said: “It’s important that clinicians talk to their patients about these types of symptoms and spend time writing down each patient’s individual progression of symptoms. Patients often know which symptoms are a bad sign that their disease is about to flare, but both patients and doctors can be reluctant to discuss mental health and neurological symptoms, particularly if they don’t realise that these can be a part of autoimmune diseases.”  

Senior study author Professor David D’Cruz from Kings College London said: “For many years, I have discussed nightmares with my lupus patients and thought that there was a link with their disease activity. This research provides evidence of this, and we are strongly encouraging more doctors to ask about nightmares and other neuropsychiatric symptoms – thought to be unusual, but actually very common in systemic autoimmunity – to help us detect disease flares earlier.”

The importance of recognising these symptoms was highlighted by reports that some patients had initially been misdiagnosed or even hospitalised with a psychotic episode and/or suicidal ideation, which was only later found to be the first sign of their autoimmune disease.

One patient from Scotland said: “At 18 I was diagnosed with borderline personality disorder, and then 6 months later with lupus at 19, so it’s all very close together and it was strange that when my [borderline personality disorder] got under control and my lupus got under control was within 6 months.”

A nurse from Scotland said: “I’ve seen them admitted for an episode of psychosis and the lupus isn’t screened for until someone says ‘oh I wonder if it might be lupus’...but it was several months and very difficult… especially with young women and it’s learning more that that is how lupus affects some people and it’s not anti-psychotic drugs they needed, it’s like a lot of steroids.”

Professor Guy Leschziner, a study author and neurologist at Guys’ and St Thomas’ hospital, and author of The Secret World of Sleep, said: "We have long been aware that alterations in dreaming may signify changes in physical, neurological and mental health, and can sometimes be early indicators of disease. However, this is the first evidence that nightmares may also help us monitor such a serious autoimmune condition like lupus, and is an important prompt to patients and clinicians alike that sleep symptoms may tell us about impending relapse."

The research was funded by The Lupus Trust and is part of the INSPIRE project (Investigating Neuropsychiatric Symptom Prevalence and Impact in Rheumatology patient Experiences).

Reference
Sloan, M. et al. Neuropsychiatric prodromes and symptom timings in relation to disease onset and/or flares in SLE: results from the mixed methods international INSPIRE study. eClinicalMedicine; 21 May 2024; DOI: 10.1016/j.eclinm.2024.102634

An increase in nightmares and hallucinations – or ‘daymares’ – could herald the onset of autoimmune diseases such as lupus, say an international team led by researchers at the University of Cambridge and King’s College London.

Both patients and doctors can be reluctant to discuss mental health and neurological symptoms, particularly if they don’t realise that these can be a part of autoimmune diseasesMel SloanDavid Wall (Getty Images)A ghostly figure silhouetted between trees in a forest


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Winners of Vice-Chancellor’s Social Impact Awards 2024 announced

Research in the University of Cambridge - Mon, 20/05/2024 - 16:04

The awards, organised by Cambridge Hub and sponsored by the Vice Chancellor’s Office, recognise and celebrate exceptional achievement in contributing to society. University of Cambridge Vice-Chancellor Professor Deborah Prentice hosted the ceremony on 30 April, which saw 15 students recognised with awards.

Undergraduate Student Awards

Sakshi Jha from Clare College

Sakshi is a law finalist, who co-founded Cambridge Freedom from Torture, a refugee-aid group, where she formed part of the first student volunteering convoy to Calais, France. Sakshi is also leading a policy paper examining UK asylum policy; she is on the Managing Board of the Cambridge Human Rights Law Journal, and she is the founding Co-Editor in Chief of the Clare College Law Journal, where she interviewed Supreme Court Justices on prevalent legal issues such as human rights and international law enforcement. Sakshi has also aided fundraising efforts as Treasurer of Cambridge Amnesty International, and is a legal researcher for a social consulting firm, completing commissioned research for the United Nations High Commissioner for Refugees. 

Millie May from St John's College

Millie is a third-year politics and social anthropology undergraduate at St John's College. She is extremely passionate about climate and social justice-related work and has been the Lead of the Cambridge Climate Society Education Team for two academic years. She has led several projects in this role, the main being a campaign and student-faculty collaborative effort to integrate climate-related content across degrees at Cambridge, which she presented at COP28 to advocate for an integrated climate change curriculum on an international level.

Faustine Petron from Department of Sociology

Faustine is a final-year Human, Social and Political Sciences student specialising in Sociology. She is interested in gendered violence and feminist modes of resistance in the Maghreb and South Asia. Outside of academia, Faustine is an award-winning campaigner who works with the government and charities in using education as a tool to prevent gendered violence in the UK.

Josephine Somerville from Clare College

Jo is a third-year English student who has acted on her passion for making long-lasting positive changes for biodiversity and climate change, centrally in the role of lead of the Cambridge Climate Society Action team. In 2023 she led the prosecution in the Generation on Trial project and more recently has initiated collaborations between the student bodies and the local community. The most extensive campaign she has been running is the Pesticide-Free Cambridge Colleges Campaign. 

Master’s Student Award

Ming Hong Choi from Hughes Hall

Ming is a Master of Finance candidate at Cambridge Judge Business School, supported by both the UK Government’s Chevening Scholarship and Cambridge Trust Scholarship. He has made contributions across and beyond Cambridge through various leadership and advisory roles in youth leadership and development, real estate, investment, arts, sustainability, and educational initiatives.

PhD Student Awards

Samantha Hodder from Clare College

Sam is a final year PhD student studying cancer biology in the Department of Biochemistry. During a clinical placement early on in her PhD, Sam saw how important it is for children with cancer to be well informed about what they’ll be going through during the course of their treatment. This experience led Sam to begin the development of Chum, an app based learning and support platform for children with cancer and their families.

Swetha Kannan from Trinity Hall

Swetha is a PhD student at the Department of Medicine, as well as a successful junior scientist, educator, and social entrepreneur. Her key contributions to the local Cambridge community have been a result of her involvement with Make-A-Smile Cambridge, Student Minds Cambridge and the Cambridge Development Initiative. Swetha also established The Lalitha Foundation, a non-profit organisation in India dedicated to the betterment of lives of cancer- and post-sepsis patients.

Mine Koprulu from Pembroke College

Mine is a final year PhD student in Medical Sciences at MRC Epidemiology Unit. Improving the lives of others and making the world a better place to live in has been a long-standing aspiration of Mine’s. Professionally, she is aiming to improve healthcare by better understanding the biological basis of diseases and identifying effective treatment opportunities. In parallel, she also has been leading and contributing to various social impact projects, ranging from building more inclusive communities to promoting gender equity.

Nazifa Rafa from Lucy Cavendish College

Nazifa is a PhD student in Geography and a pioneering researcher dedicated to addressing pressing environmental and social justice issues. Her work spans biodiversity conservation, climate change, disaster risk, water and energy security, environmental health, and sustainable development, with a focus on empowering marginalised communities.

Mayumi Sato from Trinity Hall

Mayumi is a PhD student and Gates Cambridge Scholar, and the founder and director of SustainED. She has several years' experience working with climate-affected groups, predominantly in the Global South. Her academic and advocacy interests involve leading campaigns and initiatives for impact-based community development and justice-oriented research. Her interests focus on the intersection between social equity, environmental justice, and community engagement.

Volunteering Award

Kate Lucas from Homerton College

Kate is a third year undergraduate studying Manufacturing Engineering, who is dedicated to increasing diversity in engineering. As well as being President of Cambridge University Robotics Society and organising Unibots UK 2023 and 2024, she also mentors Year 13 students through platforms such as Zero Gravity and is also an active ambassador for Homerton Changemakers.

Innovation Award

William Lan from St Catharine's College

William is an MPhil student in Medical Science who has significantly contributed to mental health advocacy and community support. He is the Postgraduate Welfare Officer at St Catharine’s College, Vice-Chair of the International Students’ Campaign, and a Mental Health Foundation Young Leader, launching crucial welfare programmes and peer-support systems. William says his innovative methods and steadfast commitment to mental health advocacy have broadened his impact, establishing him as a force for positive change within and beyond the academic community.

Global Impact Award

Paulina Pérez-Duarte Mendiola from Sidney Sussex College

Paulina is a PhD candidate focusing on play and health at the Faculty of Education. She is a paediatrician, medical anthropologist and advocate for children’s holistic health and healthcare equity. Her work focuses on the role and impact of play in sick children’s development, learning and healthcare experiences. She is the Founder and Director of Semana JIM, which is the acronym of Play in Hospital Awareness Week in Mexico.

Impact in the Local Community Award

Zara Crapper from Robinson College

Zara is a third-year undergraduate in Natural Sciences. She has been involved in Scouting since she was young, and before her arrival in Cambridge she was an adult volunteer for a Cub Scout group in Andover. Since coming to Cambridge, she has opened a new section in a local Group, enabling the youngest members in the Scouting family from across the community to come together and learn in an enjoyable and inclusive environment. 

Sustainability Award

Clara Ma from Selwyn College

Clara is a Gates Cambridge Scholar at Selwyn College, an alumna of Churchill College and a PhD student in environmental science and policy at the Cambridge Centre for Environment, Energy and Natural Resource Governance. She assists departments, colleges, and organisations across the University in transitioning to more sustainable food procurement.

The winners of this year’s Vice-Chancellor’s Social Impact Awards have been announced.

The winners of this year’s Vice-Chancellor’s Social Impact Awards


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Enhanced CD95 and interleukin 18 signalling accompany T cell receptor Vβ21.3+ activation in multi-inflammatory syndrome in children

Recent Publications - Sat, 18/05/2024 - 11:00

Nat Commun. 2024 May 18;15(1):4227. doi: 10.1038/s41467-024-48699-y.

ABSTRACT

Multisystem inflammatory syndrome in children is a post-infectious presentation SARS-CoV-2 associated with expansion of the T cell receptor Vβ21.3+ T-cell subgroup. Here we apply muti-single cell omics to compare the inflammatory process in children with acute respiratory COVID-19 and those presenting with non SARS-CoV-2 infections in children. Here we show that in Multi-Inflammatory Syndrome in Children (MIS-C), the natural killer cell and monocyte population demonstrate heightened CD95 (Fas) and Interleuking 18 receptor expression. Additionally, TCR Vβ21.3+ CD4+ T-cells exhibit skewed differentiation towards T helper 1, 17 and regulatory T cells, with increased expression of the co-stimulation receptors ICOS, CD28 and interleukin 18 receptor. We observe no functional evidence for NLRP3 inflammasome pathway overactivation, though MIS-C monocytes show elevated active caspase 8. This, coupled with raised IL18 mRNA expression in CD16- NK cells on single cell RNA sequencing analysis, suggests interleukin 18 and CD95 signalling may trigger activation of TCR Vβ21.3+ T-cells in MIS-C, driven by increased IL-18 production from activated monocytes and CD16- Natural Killer cells.

PMID:38762592 | DOI:10.1038/s41467-024-48699-y

Direct comparison of SARS-CoV-2 variant specific neutralizing antibodies in human and hamster sera

Recent Publications - Sat, 18/05/2024 - 11:00

NPJ Vaccines. 2024 May 18;9(1):85. doi: 10.1038/s41541-024-00888-y.

ABSTRACT

Antigenic characterization of newly emerging SARS-CoV-2 variants is important to assess their immune escape and judge the need for future vaccine updates. To bridge data obtained from animal sera with human sera, we analyzed neutralizing antibody titers in human and hamster single infection sera in a highly controlled setting using the same authentic virus neutralization assay performed in one laboratory. Using a Bayesian framework, we found that titer fold changes in hamster sera corresponded well to human sera and that hamster sera generally exhibited higher reactivity.

PMID:38762525 | DOI:10.1038/s41541-024-00888-y

Earth’s earliest sea creatures drove evolution by stirring the water

Research in the University of Cambridge - Fri, 17/05/2024 - 16:01

A study involving the University of Cambridge has used virtual recreations of the earliest animal ecosystems, known as marine animal forests, to demonstrate the part they played in the evolution of our planet.

Using state-of-the-art computer simulations of fossils from the Ediacaran time period - approximately 565 million years ago - scientists discovered how these animals mixed the surrounding seawater. This may have affected the distribution of important resources such as food particles and could have increased local oxygen levels.

Through this process, the scientists think these early communities could have played a crucial role in shaping the initial emergence of large and complex organisms prior to a major evolutionary radiation of different forms of animal life, the so-called Cambrian ‘explosion’.

Over long periods of time, these changes might have allowed life forms to perform more complicated functions, like those associated with the evolution of new feeding and movement styles.

The study was led by the Natural History Museum and is published today in the journal Current Biology.

Dr Emily Mitchell at the University of Cambridge’s Department of Zoology, a co-author of the report, said: “It’s exciting to learn that the very first animals from 580 million years ago had a significant impact on their environment, despite not being able to move or swim. We’ve found they mixed up the water and enabled resources to spread more widely - potentially encouraging more evolution.”

Scientists know from modern marine environments that nutrients like food and oxygen are carried in seawater, and that animals can affect water flow in ways that influence the distribution of these resources.

To test how far back this process goes in Earth’s history, the team looked at some of the earliest examples of marine animal communities, known from rocks at Mistaken Point, Newfoundland, Canada. This world-famous fossil site perfectly preserves early life forms thanks to a cover of volcanic ash (sometimes referred to as an ‘Ediacaran Pompeii’).

Although some of these life forms look like plants, analysis of their anatomy and growth strongly suggests they are animals. Owing to the exceptional preservation of the fossils, the scientists could recreate digital models of key species, which were used as a basis for further computational analyses.

First author Dr Susana Gutarra, a Scientific Associate at the Natural History Museum, said: “We used ecological modelling and computer simulations to investigate how 3D virtual assemblages of Ediacaran life forms affected water flow. Our results showed that these communities were capable of ecological functions similar to those seen in present-day marine ecosystems.”

The study showed that one of the most important Ediacaran organisms for disrupting the flow of water was the cabbage-shaped animal Bradgatia, named after Bradgate Park in England. The Bradgatia from Mistaken Point are among some of the largest fossils known from this site, reaching diameters of over 50 centimetres.

Through their influence on the water around them, the scientists believe these Ediacaran organisms might have been capable of enhancing local oxygen concentrations. This biological mixing might also have had repercussions for the wider environment, possibly making other areas of the sea floor more habitable and perhaps even driving evolutionary innovation.

Dr Imran Rahman, lead author and Principal Researcher at the Natural History Museum, said: “The approach we’ve developed to study Ediacaran fossil communities is entirely new in palaeontology, providing us with a powerful tool for studying how past and present marine ecosystems might shape and influence their environment.”

The research was funded by the UK Natural Environment Research Council and the US National Science Foundation.

Reference: Gutarra-Diaz, S.“Ediacaran marine animal forests and the ventilation of the oceans.” May 2024, Current Biology. DOI: 10.1016/j.cub.2024.04.059

Adapted from a press release by the Natural History Museum

3D reconstructions suggest that simple marine animals living over 560 million years ago drove the emergence of more complex life by mixing the seawater around them

It’s exciting to learn that the very first animals from 580 million years ago had a significant impact on their environment, despite not being able to move or swim.Emily MitchellHugo Salais, Metazoa StudioArtistic recreation of the marine animal forest


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Attribution-Noncommerical

Webb detects most distant black hole merger to date

Research in the University of Cambridge - Thu, 16/05/2024 - 18:34

Astronomers have found supermassive black holes with masses of millions to billions times that of the Sun in most massive galaxies in the local Universe, including in our Milky Way galaxy. These black holes have likely had a major impact on the evolution of the galaxies they reside in. However, scientists still don’t fully understand how these objects grew to become so massive.

The finding of gargantuan black holes already in place in the first billion years after the Big Bang indicates that such growth must have happened very rapidly, and very early. Now, the James Webb Space Telescope is shedding new light on the growth of black holes in the early Universe.

The new Webb observations have provided evidence for an ongoing merger of two galaxies and their massive black holes when the Universe was just 740 million years old. The system is known as ZS7.

Massive black holes that are actively accreting matter have distinctive spectrographic features that allow astronomers to identify them. For very distant galaxies, like those in this study, these signatures are inaccessible from the ground and can only be seen with Webb.

“We found evidence for very dense gas with fast motions in the vicinity of the black hole, as well as hot and highly ionised gas illuminated by the energetic radiation typically produced by black holes in their accretion episodes,” said lead author Dr Hannah Übler of Cambridge’s Cavendish Laboratory and Kavli Institute for Cosmology. “Thanks to the unprecedented sharpness of its imaging capabilities, Webb also allowed our team to spatially separate the two black holes.”

The team found that one of the two black holes has a mass that is 50 million times the mass of the Sun. “The mass of the other black hole is likely similar, although it is much harder to measure because this second black hole is buried in dense gas,” said team member Professor Roberto Maiolino, also from the Kavli Institute.

“Our findings suggest that merging is an important route through which black holes can rapidly grow, even at cosmic dawn,” said Übler. “Together with other Webb findings of active, massive black holes in the distant Universe, our results also show that massive black holes have been shaping the evolution of galaxies from the very beginning.”

The team notes that once the two black holes merge, they will also generate gravitational waves. Events like this will be detectable with the next generation of gravitational wave observatories, such as the upcoming Laser Interferometer Space Antenna (LISA) mission, which was recently approved by the European Space Agency and will be the first space-based observatory dedicated to studying gravitational waves.

This discovery was from observations made as part of the Galaxy Assembly with NIRSpec Integral Field Spectroscopy programme. The team has recently been awarded a new Large Programme in Webb’s Cycle 3 of observations, to study in detail the relationship between massive black holes and their host galaxies in the first billion years. An important component of this programme will be to systematically search for and characterise black hole mergers. This effort will determine the rate at which black hole merging occurs at early cosmic epochs and will assess the role of merging in the early growth of black holes and the rate at which gravitational waves are produced from the dawn of time.

These results have been published in the Monthly Notices of the Royal Astronomical Society.

Reference:
Hannah Übler et al. ‘GA-NIFS: JWST discovers an offset AGN 740 million years after the big bang’ Monthly Notices of the Royal Astronomical Society (2024). DOI: 10.1093/mnras/stae943

Adapted from a press release by the European Space Agency.

An international team of astronomers, led by the University of Cambridge, has used the James Webb Space Telescope to find evidence for an ongoing merger of two galaxies and their massive black holes when the Universe was only 740 million years old. This marks the most distant detection of a black hole merger ever obtained and the first time that this phenomenon has been detected so early in the Universe.

Massive black holes have been shaping the evolution of galaxies from the very beginningHannah ÜblerESA/Webb, NASA, CSA, J. Dunlop, H. Übler, R. Maiolino, et. alThe environment of the galaxy system ZS7 from the JWST PRIMER programme as seen by Webb's NIRCam instrument


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Attribution

A novel family of defensin-like peptides from Hermetia illucens with antibacterial properties

Recent Publications - Thu, 16/05/2024 - 11:00

BMC Microbiol. 2024 May 16;24(1):167. doi: 10.1186/s12866-024-03325-1.

ABSTRACT

BACKGROUND: The world faces a major infectious disease challenge. Interest in the discovery, design, or development of antimicrobial peptides (AMPs) as an alternative approach for the treatment of bacterial infections has increased. Insects are a good source of AMPs which are the main effector molecules of their innate immune system. Black Soldier Fly Larvae (BSFL) are being developed for large-scale rearing for food sustainability, waste reduction and as sustainable animal and fish feed. Bioinformatic studies have suggested that BSFL have the largest number of AMPs identified in insects. However, most AMPs identified in BSF have not yet undergone antimicrobial evaluation but are promising leads to treat critical infections.

RESULTS: Jg7197.t1, Jg7902.t1 and Jg7904.t1 were expressed into the haemolymph of larvae following infection with Salmonella enterica serovar Typhimurium and were predicted to be AMPs using the computational tool ampir. The genes encoding these proteins were within 2 distinct clusters in chromosome 1 of the BSF genome. Following removal of signal peptides, predicted structures of the mature proteins were superimposed, highlighting a high degree of structural conservation. The 3 AMPs share primary sequences with proteins that contain a Kunitz-binding domain; characterised for inhibitory action against proteases, and antimicrobial activities. An in vitro antimicrobial screen indicated that heterologously expressed SUMO-Jg7197.t1 and SUMO-Jg7902.t1 did not show activity against 12 bacterial strains. While recombinant SUMO-Jg7904.t1 had antimicrobial activity against a range of Gram-negative and Gram-positive bacteria, including the serious pathogen Pseudomonas aeruginosa.

CONCLUSIONS: We have cloned and purified putative AMPs from BSFL and performed initial in vitro experiments to evaluate their antimicrobial activity. In doing so, we have identified a putative novel defensin-like AMP, Jg7904.t1, encoded in a paralogous gene cluster, with antimicrobial activity against P. aeruginosa.

PMID:38755524 | DOI:10.1186/s12866-024-03325-1

Nine Cambridge scientists elected as Fellows of the Royal Society 2024

Research in the University of Cambridge - Thu, 16/05/2024 - 09:51

The Royal Society is a self-governing Fellowship of many of the world’s most distinguished scientists drawn from all areas of science, engineering and medicine.

The Society’s fundamental purpose, as it has been since its foundation in 1660, is to recognise, promote and support excellence in science and to encourage the development and use of science for the benefit of humanity.

This year, over 90 researchers, innovators and communicators from around the world have been elected as Fellows of the Royal Society for their substantial contribution to the advancement of science. Nine of these are from the University of Cambridge.

Sir Adrian Smith, President of the Royal Society said: “I am pleased to welcome such an outstanding group into the Fellowship of the Royal Society.

“This new cohort have already made significant contributions to our understanding of the world around us and continue to push the boundaries of possibility in academic research and industry.

“From visualising the sharp rise in global temperatures since the industrial revolution to leading the response to the Covid-19 pandemic, their diverse range of expertise is furthering human understanding and helping to address some of our greatest challenges. It is an honour to have them join the Fellowship.”

The Fellows and Foreign Members join the ranks of Stephen Hawking, Isaac Newton, Charles Darwin, Albert Einstein, Lise Meitner, Subrahmanyan Chandrasekhar and Dorothy Hodgkin.

The new Cambridge fellows are: 
 

Professor Sir John Aston Kt FRS

Aston is the Harding Professor of Statistics in Public Life at the Statistical Laboratory, Department of Pure Mathematics and Mathematical Statistics, where he develops techniques for public policy and improves the use of quantitative methods in public policy debates.

From 2017 to 2020 he was the Chief Scientific Adviser to the Home Office, providing statistical and scientific advice to ministers and officials, and was involved in the UK’s response to the Covid pandemic. He was knighted in 2021 for services to statistics and public policymaking, and is a Fellow of Churchill College.
 

Professor Sarah-Jayne Blakemore FBA FMedSci FRS

Blakemore is the Professor of Psychology and Cognitive Neuroscience, Department of Psychology, and leader of the Developmental Cognitive Neuroscience Group. Her research focuses on the development of social cognition and decision making in the human adolescent brain, and adolescent mental health. 

Blakemore has been awarded several national and international prizes for her research, and is a Fellow of the British Academy, the American Association of Psychological Science and the Academy of Medical Sciences. 
 

Professor Patrick Chinnery FMedSci FRS

Chinnery is Professor of Neurology and head of the University’s Department of Clinical Neurosciences, and a Fellow of Gonville & Caius College. He was appointed Executive Chair of the Medical Research Council last year, having previously been MRC Clinical Director since 2019.

His principal research is the role of mitochondria in human disease and developing new treatments for mitochondrial disorders. Chinnery is a Wellcome Principal Research Fellow with a lab based in the MRC Mitochondrial Biology Unit and jointly chairs the NIHR BioResource for Translational Research in Common and Rare Diseases. He is a Fellow of the Academy of Medical Sciences.


Professor Rebecca Fitzgerald FMedSci FRS

Fitzgerald is Professor of Cancer Prevention in the Department of Oncology and the inaugural Director of the University’s new Early Cancer Institute, which launched in 2022. She is a Fellow of Trinity College.

Her pioneering work to devise a first-in-class, non-endoscopic capsule sponge test for identifying individuals at high risk for oesophageal cancer has won numerous prizes, including the Westminster Medal, and this test is now being rolled out in the NHS and beyond by her spin-out Cyted Ltd.


Professor David Hodell FRS

Hodell is the Woodwardian Professor of Geology and Director of the Godwin Laboratory for Palaeoclimate Research in the Department of Earth Sciences, and a Fellow of Clare College.

A marine geologist and paleoclimatologist, his research focuses on high-resolution paleoclimate records from marine and lake sediments, as well as mineral deposits, to better understand past climate dynamics. Hodell is a fellow of the American Geophysical Union and the American Association for the Advancement of Science. He has received the Milutin Milankovic Medal.


Professor Eric Lauga FRS

Lauga is Professor of Applied Mathematics in the Department of Applied Mathematics and Theoretical Physics, where his research is in fluid mechanics, biophysics and soft matter. Lauga is the author, or co-author, of over 180 publications and currently serves as Associate Editor for the journal Physical Review Fluids.

He is a recipient of three awards from the American Physical Society: the Andreas Acrivos Dissertation Award in Fluid Dynamics, the François Frenkiel Award for Fluid Mechanics and the Early Career Award for Soft Matter Research. He is a Fellow of the American Physical Society and of Trinity College.


Professor George Malliaras FRS

Malliaras is the Prince Philip Professor of Technology in the Department of Engineering, where he leads a group that works on the development and translation of implantable and wearable devices that interface with electrically active tissues, with applications in neurological disorders and brain cancer.

Research conducted by Malliaras has received awards from the European Academy of Sciences, the New York Academy of Sciences, and the US National Science Foundation among others. He is a Fellow of the Materials Research Society and of the Royal Society of Chemistry.


Professor Oscar Randal-Williams FRS

Randal-Williams is the Sadleirian Professor of Pure Mathematics in the Department of Pure Mathematics and Mathematical Statistics.

He has received the Whitehead Prize from the London Mathematical Society, a Philip Leverhulme Prize, the Oberwolfach Prize, the Dannie Heineman Prize of the Göttingen Academy of Sciences and Humanities, and was jointly awarded the Clay Research Award.

Randal-Williams is one of two managing editors of the Proceedings of the London Mathematical Society, and an editor of the Journal of Topology.


Professor Mihaela van der Schaar FRS

Van der Schaar is the John Humphrey Plummer Professor of Machine Learning, Artificial Intelligence and Medicine in the Departments of Applied Mathematics and Theoretical Physics, Engineering and Medicine.

She is the founder and director of the Cambridge Centre for AI in Medicine, and a Fellow at The Alan Turing Institute. Her work has received numerous awards, including the Oon Prize on Preventative Medicine, a National Science Foundation CAREER Award, and the IEEE Darlington Award.

Van der Schaar is credited as inventor on 35 US patents, and has made over 45 contributions to international standards for which she received three ISO Awards. In 2019, a Nesta report declared her the most-cited female AI researcher in the UK.


 

Nine outstanding Cambridge researchers have been elected as Fellows of the Royal Society, the UK’s national academy of sciences and the oldest science academy in continuous existence.

Royal SocietyThe Royal Society in central London


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Comparative analysis of SARS-CoV-2 neutralization titers reveals consistency between human and animal model serum and across assays

Recent Publications - Wed, 15/05/2024 - 11:00

Sci Transl Med. 2024 May 15;16(747):eadl1722. doi: 10.1126/scitranslmed.adl1722. Epub 2024 May 15.

ABSTRACT

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires ongoing monitoring to judge the ability of newly arising variants to escape the immune response. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal serum samples. We compared 18 datasets generated using human, hamster, and mouse serum and six different neutralization assays. Datasets using animal model serum samples showed higher titer magnitudes than datasets using human serum samples in this comparison. Fold change in neutralization of variants compared to ancestral SARS-CoV-2, immunodominance patterns, and antigenic maps were similar among serum samples and assays. Most assays yielded consistent results, except for differences in fold change in cytopathic effect assays. Hamster serum samples were a consistent surrogate for human first-infection serum samples. These results inform the transition of surveillance of SARS-CoV-2 antigenic variation from dependence on human first-infection serum samples to the utilization of serum samples from animal models.

PMID:38748773 | DOI:10.1126/scitranslmed.adl1722

2023 was the hottest summer in two thousand years

Research in the University of Cambridge - Tue, 14/05/2024 - 16:00

Although 2023 has been reported as the hottest year on record, the instrumental evidence only reaches back as far as 1850 at best, and most records are limited to certain regions.

Now, by using past climate information from annually resolved tree rings over two millennia, scientists from the University of Cambridge and the Johannes Gutenberg University Mainz have shown how exceptional the summer of 2023 was.

Even allowing for natural climate variations over hundreds of years, 2023 was still the hottest summer since the height of the Roman Empire, exceeding the extremes of natural climate variability by half a degree Celsius.

“When you look at the long sweep of history, you can see just how dramatic recent global warming is,” said co-author Professor Ulf Büntgen, from Cambridge’s Department of Geography. “2023 was an exceptionally hot year, and this trend will continue unless we reduce greenhouse gas emissions dramatically.”

The results, reported in the journal Nature, also demonstrate that in the Northern Hemisphere, the 2015 Paris Agreement to limit warming to 1.5C above pre-industrial levels has already been breached.

Early instrumental temperature records, from 1850-1900, are sparse and inconsistent. The researchers compared early instrumental data with a large-scale tree ring dataset and found the 19th century temperature baseline used to contextualise global warming is several tenths of a degree Celsius colder than previously thought. By re-calibrating this baseline, the researchers calculated that summer 2023 conditions in the Northern Hemisphere were 2.07C warmer than mean summer temperatures between 1850 and 1900.

“Many of the conversations we have around global warming are tied to a baseline temperature from the mid-19th century, but why is this the baseline? What is normal, in the context of a constantly-changing climate, when we’ve only got 150 years of meteorological measurements?” said Büntgen. “Only when we look at climate reconstructions can we better account for natural variability and put recent anthropogenic climate change into context.”

Tree rings can provide that context, since they contain annually-resolved and absolutely-dated information about past summer temperatures. Using tree-ring chronologies allows researchers to look much further back in time without the uncertainty associated with some early instrumental measurements.

The available tree-ring data reveals that most of the cooler periods over the past 2000 years, such as the Little Antique Ice Age in the 6th century and the Little Ice Age in the early 19th century, followed large-sulphur-rich volcanic eruptions. These eruptions spew huge amounts of aerosols into the stratosphere, triggering rapid surface cooling. The coldest summer of the past two thousand years, in 536 CE, followed one such eruption, and was 3.93C colder than the summer of 2023.

Most of the warmer periods covered by the tree ring data can be attributed to the El Niño climate pattern, or El Niño-Southern Oscillation (ENSO). El Niño affects weather worldwide due to weakened trade winds in the Pacific Ocean and often results in warmer summers in the Northern Hemisphere. While El Niño events were first noted by fisherman in the 17th century, they can be observed in the tree ring data much further back in time.

However, over the past 60 years, global warming caused by greenhouse gas emissions are causing El Niño events to become stronger, resulting in hotter summers. The current El Niño event is expected to continue into early summer 2024, making it likely that this summer will break temperature records once again.

“It’s true that the climate is always changing, but the warming in 2023, caused by greenhouse gases, is additionally amplified by El Niño conditions, so we end up with longer and more severe heat waves and extended periods of drought,” said Professor Jan Esper, the lead author of the study from the Johannes Gutenberg University Mainz in Germany. “When you look at the big picture, it shows just how urgent it is that we reduce greenhouse gas emissions immediately.”

The researchers note that while their results are robust for the Northern Hemisphere, it is difficult to obtain global averages for the same period since data is sparse for the Southern Hemisphere. The Southern Hemisphere also responds differently to climate change, since it is far more ocean-covered than the Northern Hemisphere.

The research was supported in part by the European Research Council.

Reference:
Jan Esper, Max Torbenson, Ulf Büntgen. ‘2023 summer warmth unparalleled over the past 2,000 years.’ Nature (2024). DOI: 10.1038/s41586-024-07512-y

Researchers have found that 2023 was the hottest summer in the Northern Hemisphere in the past two thousand years, almost four degrees warmer than the coldest summer during the same period.

When you look at the long sweep of history, you can see just how dramatic recent global warming isUlf Büntgentrekandshoot via Getty ImagesMorning sun over Los Angeles


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Over 20,000 people join search for new dementia treatments

Research in the University of Cambridge - Tue, 14/05/2024 - 10:00

Using the resource, scientists have already been able to show for the first time that two important bodily mechanisms – inflammation and metabolism – play a role in the decline in brain function as we age.

By 2050, approximately 139 million people are expected to be living with dementia worldwide. In the UK, in 2022, UK Prime Minister launched the Dame Barbara Windsor Dementia Mission, part of the government’s commitment to double increase research funding for dementia.

Although there has been recent progress developing drugs that slow down progression of the disease, the two leading treatments only have a small effect, and the vast majority of new approaches that work in animal studies fail when it comes to patient clinical trials.

One explanation for these failures is that the drugs are tested in people who already have memory loss – and by this point, it may be too late to stop or reverse the disease. Hence, there is an urgent need to understand what is going on before people develop symptoms at the very early stages of disease, and to test new treatments before people come to their doctor with cognitive problems. This approach requires a large cohort of participants willing to be recalled for clinical and experimental studies of cognitive decline.

Today, writing in the journal Nature Medicine, scientists led by the University of Cambridge in partnership with the Alzheimer’s Society report how they have recruited 21,000 people aged 17-85 to the Genes and Cognition Cohort within the National Institute for Health and Care Research (NIHR) BioResource.

The NIHR BioResource was established in 2007 to recruit volunteers keen to engage in experimental medicine and clinical trials across the whole of medicine. Approximately half of its participants are recruited to disease specific cohorts, but the other half are from the general public, and detailed information about their genetics and their physical makeup has been collected. They have all given their consent to be contacted about future research studies.

For the Genes and Cognition Cohort, researchers used a combination of cognitive tests and genetic data, combined with other health data and demographic information, to enable the first at-scale study of cognitive changes. This will allow the team to recruit participants for studies of cognitive decline and new treatments for this.

For example, a pharmaceutical company with a promising new drug candidate to slow the cognitive decline could recruit people through the BioResource based on their profile and invite them to join in the clinical trial. Having a baseline measurement for their cognitive performance will allow scientists to observe whether the drug slows their expected cognitive decline.

Professor Patrick Chinnery from the Department of Clinical Neurosciences at the University of Cambridge and co-Chair of the NIHR BioResource, who has led the project, said: “We’ve created a resource that is unmatched anywhere else in the world, recruiting people who are not showing any signs of dementia rather than people already having symptoms. It will allow us to match individuals to particular studies and speed up the development of much-needed new drugs to treat dementia.

“We know that over time our cognitive function decreases, so we’ve plotted out the expected trajectory of various different cognitive functions over our volunteers’ life course according to their genetic risk. We’ve also asked the question, ‘What are the genetic mechanisms that predispose you to slow or fast cognitive decline as you age?’.”

Using the research, the team have identified two mechanisms that appear to affect cognition as we age and could serve as potential targets to slow down cognitive decline and thereby delay the onset of dementia. The first of these is inflammation, with immune cells specific to the brain and central nervous system – known as microglia – causing gradual deterioration of the brain and hence its ability to perform key cognitive functions. The second mechanism relates to metabolism – in particular, how carbohydrates are broken down in the brain to release energy.

Professor Chinnery added: “Cognitive decline is a natural process, but when it drops below a particular threshold, that’s when there’s a problem – that is when we would diagnose dementia. Anything that slows that decline will delay when we drop below that threshold. If you could put off the onset of dementia from 65 to 75 or even 85, it would make a huge difference at an individual and at a population level.”

Dr Richard Oakley, Associate Director of Research and Innovation at Alzheimer’s Society, said: “This exciting study, funded by Alzheimer’s Society, is an important step in helping us to better understand how the diseases that cause dementia begin, and will aid in the development of new treatments that target the early stages of these diseases.

“The data, from over 20,000 volunteers, helps us to better understand the connection between participants’ genes and cognitive decline and allows for further ground-breaking analysis in future. 

“One in three people born in the UK today will go on to develop dementia in their lifetime but research will beat dementia. We need to make it a reality sooner through more funding, partnership working and people taking part in dementia research.”

For further information about how you can join the BioResource and contribute to studies like this one and many others, please visit www.bioresource.nihr.ac.uk.

The research was carried out in collaboration with the Medical Research Council Biostatistics Unit and was supported by the Alzheimer’s Society and the NIHR BioResource. The researchers were also supported by Wellcome and the Medical Research Council.

Reference
Rahman, MS et al. Dynamics of cognitive variability with age and its genetic underpinning in NIHR BioResource Genes and Cognition Cohort participants. Nat Med; 14 May 2024; DOI: 10.1038/s41591-024-02960-5

More than 20,000 volunteers have been recruited to a resource aimed at speeding up the development of much-needed dementia drugs. The cohort will enable scientists in universities and industry to involve healthy individuals who may be at increased risk of dementia in clinical trials to test whether new drugs can slow the decline in various brain functions including memory and delay the onset of dementia.

We’ve created a resource that is unmatched anywhere else in the world, recruiting people who are not showing any signs of dementia rather than people already having symptomsPatrick ChinneryHalfpoint Images (Getty Images)Smiling elderly woman speaking to a healthcare worker


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Fri 24 May 13:00: STING and inflammatory disease: insights from monogenic conditions

Infectious Diseases Seminars - Mon, 13/05/2024 - 13:35
STING and inflammatory disease: insights from monogenic conditions

This Cambridge Immunology and Medicine Seminar will take place on Friday 24 May 2024, starting at 1:00 pm, in the Ground Floor Lecture Theatre, Jeffrey Cheah Biomedical Centre (JCBC)

Speaker: Dr Karen Mackenzie, MRC Clinician Scientist Fellow and Honorary Consultant in Clinical Genetics, Institute for Regeneration and Repair, Centre for Inflammation Research, University of Edinburgh

Host: James Nathan, Wellcome Senior Clinical Fellow, Professor of Respiratory Medicine, University of Cambridge

Refreshments will be available following the Seminar.

Add to your calendar or Include in your list

Fri 24 May 13:00: STING and inflammatory disease: insights from monogenic conditions

Infectious Disease Talks - Mon, 13/05/2024 - 13:35
STING and inflammatory disease: insights from monogenic conditions

This Cambridge Immunology and Medicine Seminar will take place on Friday 24 May 2024, starting at 1:00 pm, in the Ground Floor Lecture Theatre, Jeffrey Cheah Biomedical Centre (JCBC)

Speaker: Dr Karen Mackenzie, MRC Clinician Scientist Fellow and Honorary Consultant in Clinical Genetics, Institute for Regeneration and Repair, Centre for Inflammation Research, University of Edinburgh

Host: James Nathan, Wellcome Senior Clinical Fellow, Professor of Respiratory Medicine, University of Cambridge

Refreshments will be available following the Seminar.

Add to your calendar or Include in your list

Birth by C-section more than doubles odds of measles vaccine failure

A study by the University of Cambridge, UK, and Fudan University, China, has found that a single dose of the measles jab is up to 2.6 times more likely to be completely ineffective in children born by C-section, compared to those born naturally.

Failure of the vaccine means that the child’s immune system does not produce antibodies to fight against measles infection, so they remain susceptible to the disease.

A second measles jab was found to induce a robust immunity against measles in C-section children.

Measles is a highly infectious disease, and even low vaccine failure rates can significantly increase the risk of an outbreak.

A potential reason for this effect is linked to the development of the infant’s gut microbiome – the vast collection of microbes that naturally live inside the gut. Other studies have shown that vaginal birth transfers a greater variety of microbes from mother to baby, which can boost the immune system.

“We’ve discovered that the way we’re born - either by C-section or natural birth - has long-term consequences on our immunity to diseases as we grow up,” said Professor Henrik Salje in the University of Cambridge​’s Department of Genetics, joint senior author of the report.

He added: “We know that a lot of children don't end up having their second measles jab, which is dangerous for them as individuals and for the wider population.

“Infants born by C-section are the ones we really want to be following up to make sure they get their second measles jab, because their first jab is much more likely to fail.”

The results are published today in the journal Nature Microbiology.

At least 95% of the population needs to be fully vaccinated to keep measles under control but the UK is well below this, despite the Measles, Mumps and Rubella (MMR) vaccine being available through the NHS Routine Childhood Immunisation Programme.

An increasing number of women around the world are choosing to give birth by caesarean section: in the UK a third of all births are by C-section, in Brazil and Turkey over half of all children are born this way.

“With a C-section birth, children aren’t exposed to the mother’s microbiome in the same way as with a vaginal birth. We think this means they take longer to catch up in developing their gut microbiome, and with it, the ability of the immune system to be primed by vaccines against diseases including measles,” said Salje.

To get their results, the researchers used data from previous studies of over 1,500 children in Hunan, China, which included blood samples taken every few weeks from birth to the age of 12. This allowed them to see how levels of measles antibodies in the blood change over the first few years of life, including following vaccination.

They found that 12% of children born via caesarean section had no immune response to their first measles vaccination, as compared to 5% of children born by vaginal delivery. This means that many of the children born by C-section did still mount an immune response following their first vaccination.

Two doses of the measles jab are needed for the body to mount a long-lasting immune response and protect against measles. According to the World Health Organisation, in 2022 only 83% of the world's children had received one dose of measles vaccine by their first birthday – the lowest since 2008.

Salje said: “Vaccine hesitancy is really problematic, and measles is top of the list of diseases we’re worried about because it’s so infectious.”

Measles is one of the world’s most contagious diseases, spread by coughs and sneezes. It starts with cold-like symptoms and a rash, and can lead to serious complications including blindness, seizures, and death.

Before the measles vaccine was introduced in 1963, there were major measles epidemics every few years causing an estimated 2.6 million deaths each year.

The research was funded by the National Natural Science Foundation of China.

Reference

Wang, W. et al: ‘Dynamics of measles immunity from birth and following vaccination.’ Nature Microbiology, 13 May 2024. DOI: 10.1038/s41564-024-01694-x

Researchers say it is vital that children born by caesarean section receive two doses of the measles vaccine for robust protection against the disease.

CHBD / E+ / Getty Images Very sick 5 year old little boy fighting measles infection, boy is laying in bed under the blanket with a agonizing expression, boy is covered with rash caused by virus.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Birth by C-section more than doubles odds of measles vaccine failure

News in the Media - Mon, 13/05/2024 - 10:01

A study by the University of Cambridge, UK, and Fudan University, China, has found that a single dose of the measles jab is up to 2.6 times more likely to be completely ineffective in children born by C-section, compared to those born naturally.

Failure of the vaccine means that the child’s immune system does not produce antibodies to fight against measles infection, so they remain susceptible to the disease.

A second measles jab was found to induce a robust immunity against measles in C-section children.

Measles is a highly infectious disease, and even low vaccine failure rates can significantly increase the risk of an outbreak.

A potential reason for this effect is linked to the development of the infant’s gut microbiome – the vast collection of microbes that naturally live inside the gut. Other studies have shown that vaginal birth transfers a greater variety of microbes from mother to baby, which can boost the immune system.

“We’ve discovered that the way we’re born - either by C-section or natural birth - has long-term consequences on our immunity to diseases as we grow up,” said Professor Henrik Salje in the University of Cambridge​’s Department of Genetics, joint senior author of the report.

He added: “We know that a lot of children don't end up having their second measles jab, which is dangerous for them as individuals and for the wider population.

“Infants born by C-section are the ones we really want to be following up to make sure they get their second measles jab, because their first jab is much more likely to fail.”

The results are published today in the journal Nature Microbiology.

At least 95% of the population needs to be fully vaccinated to keep measles under control but the UK is well below this, despite the Measles, Mumps and Rubella (MMR) vaccine being available through the NHS Routine Childhood Immunisation Programme.

An increasing number of women around the world are choosing to give birth by caesarean section: in the UK a third of all births are by C-section, in Brazil and Turkey over half of all children are born this way.

“With a C-section birth, children aren’t exposed to the mother’s microbiome in the same way as with a vaginal birth. We think this means they take longer to catch up in developing their gut microbiome, and with it, the ability of the immune system to be primed by vaccines against diseases including measles,” said Salje.

To get their results, the researchers used data from previous studies of over 1,500 children in Hunan, China, which included blood samples taken every few weeks from birth to the age of 12. This allowed them to see how levels of measles antibodies in the blood change over the first few years of life, including following vaccination.

They found that 12% of children born via caesarean section had no immune response to their first measles vaccination, as compared to 5% of children born by vaginal delivery. This means that many of the children born by C-section did still mount an immune response following their first vaccination.

Two doses of the measles jab are needed for the body to mount a long-lasting immune response and protect against measles. According to the World Health Organisation, in 2022 only 83% of the world's children had received one dose of measles vaccine by their first birthday – the lowest since 2008.

Salje said: “Vaccine hesitancy is really problematic, and measles is top of the list of diseases we’re worried about because it’s so infectious.”

Measles is one of the world’s most contagious diseases, spread by coughs and sneezes. It starts with cold-like symptoms and a rash, and can lead to serious complications including blindness, seizures, and death.

Before the measles vaccine was introduced in 1963, there were major measles epidemics every few years causing an estimated 2.6 million deaths each year.

The research was funded by the National Natural Science Foundation of China.

Reference

Wang, W. et al: ‘Dynamics of measles immunity from birth and following vaccination.’ Nature Microbiology, 13 May 2024. DOI: 10.1038/s41564-024-01694-x

Researchers say it is vital that children born by caesarean section receive two doses of the measles vaccine for robust protection against the disease.

CHBD / E+ / Getty Images Very sick 5 year old little boy fighting measles infection, boy is laying in bed under the blanket with a agonizing expression, boy is covered with rash caused by virus.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Birth by C-section more than doubles odds of measles vaccine failure

Research in the University of Cambridge - Mon, 13/05/2024 - 10:01

A study by the University of Cambridge, UK, and Fudan University, China, has found that a single dose of the measles jab is up to 2.6 times more likely to be completely ineffective in children born by C-section, compared to those born naturally.

Failure of the vaccine means that the child’s immune system does not produce antibodies to fight against measles infection, so they remain susceptible to the disease.

A second measles jab was found to induce a robust immunity against measles in C-section children.

Measles is a highly infectious disease, and even low vaccine failure rates can significantly increase the risk of an outbreak.

A potential reason for this effect is linked to the development of the infant’s gut microbiome – the vast collection of microbes that naturally live inside the gut. Other studies have shown that vaginal birth transfers a greater variety of microbes from mother to baby, which can boost the immune system.

“We’ve discovered that the way we’re born - either by C-section or natural birth - has long-term consequences on our immunity to diseases as we grow up,” said Professor Henrik Salje in the University of Cambridge​’s Department of Genetics, joint senior author of the report.

He added: “We know that a lot of children don't end up having their second measles jab, which is dangerous for them as individuals and for the wider population.

“Infants born by C-section are the ones we really want to be following up to make sure they get their second measles jab, because their first jab is much more likely to fail.”

The results are published today in the journal Nature Microbiology.

At least 95% of the population needs to be fully vaccinated to keep measles under control but the UK is well below this, despite the Measles, Mumps and Rubella (MMR) vaccine being available through the NHS Routine Childhood Immunisation Programme.

An increasing number of women around the world are choosing to give birth by caesarean section: in the UK a third of all births are by C-section, in Brazil and Turkey over half of all children are born this way.

“With a C-section birth, children aren’t exposed to the mother’s microbiome in the same way as with a vaginal birth. We think this means they take longer to catch up in developing their gut microbiome, and with it, the ability of the immune system to be primed by vaccines against diseases including measles,” said Salje.

To get their results, the researchers used data from previous studies of over 1,500 children in Hunan, China, which included blood samples taken every few weeks from birth to the age of 12. This allowed them to see how levels of measles antibodies in the blood change over the first few years of life, including following vaccination.

They found that 12% of children born via caesarean section had no immune response to their first measles vaccination, as compared to 5% of children born by vaginal delivery. This means that many of the children born by C-section did still mount an immune response following their first vaccination.

Two doses of the measles jab are needed for the body to mount a long-lasting immune response and protect against measles. According to the World Health Organisation, in 2022 only 83% of the world's children had received one dose of measles vaccine by their first birthday – the lowest since 2008.

Salje said: “Vaccine hesitancy is really problematic, and measles is top of the list of diseases we’re worried about because it’s so infectious.”

Measles is one of the world’s most contagious diseases, spread by coughs and sneezes. It starts with cold-like symptoms and a rash, and can lead to serious complications including blindness, seizures, and death.

Before the measles vaccine was introduced in 1963, there were major measles epidemics every few years causing an estimated 2.6 million deaths each year.

The research was funded by the National Natural Science Foundation of China.

Reference

Wang, W. et al: ‘Dynamics of measles immunity from birth and following vaccination.’ Nature Microbiology, 13 May 2024. DOI: 10.1038/s41564-024-01694-x

Researchers say it is vital that children born by caesarean section receive two doses of the measles vaccine for robust protection against the disease.

Photo credit should be to Wei Wang, Fudan University.Antibody testing conducted at Fudan University.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Fri 24 May 13:00: STING and inflammatory disease: insights from monogenic conditions

Infectious Diseases Seminars - Mon, 13/05/2024 - 09:11
STING and inflammatory disease: insights from monogenic conditions

This Cambridge Immunology and Medicine Seminar will take place on Friday 24 May 2024, starting at 1:00 pm, in the Ground Floor Lecture Theatre, Jeffrey Cheah Biomedical Centre (JCBC)

Speaker: Dr Karen Mackenzie, MRC Clinician Scientist Fellow and Honorary Consultant in Clinical Genetics, Institute for Regeneration and Repair, Centre for Inflammation Research, University of Edinburgh

Host: James Nathan, Wellcome Senior Clinical Fellow, Professor of Respiratory Medicine, University of Cambridge

For anyone who can’t attend in person, please join the Cambridge Immunology and Medicine Seminar on Zoom:

Join Zoom Meeting: https://cam-ac-uk.zoom.us/j/89741634903?pwd=dzcxbU45NjAwQXo1dmlNMjR3V0lUUT09

Meeting ID: 897 4163 4903 Passcode: 539740

Refreshments will be available following the Seminar.

Add to your calendar or Include in your list

Fri 24 May 13:00: STING and inflammatory disease: insights from monogenic conditions

Infectious Disease Talks - Mon, 13/05/2024 - 09:11
STING and inflammatory disease: insights from monogenic conditions

This Cambridge Immunology and Medicine Seminar will take place on Friday 24 May 2024, starting at 1:00 pm, in the Ground Floor Lecture Theatre, Jeffrey Cheah Biomedical Centre (JCBC)

Speaker: Dr Karen Mackenzie, MRC Clinician Scientist Fellow and Honorary Consultant in Clinical Genetics, Institute for Regeneration and Repair, Centre for Inflammation Research, University of Edinburgh

Host: James Nathan, Wellcome Senior Clinical Fellow, Professor of Respiratory Medicine, University of Cambridge

For anyone who can’t attend in person, please join the Cambridge Immunology and Medicine Seminar on Zoom:

Join Zoom Meeting: https://cam-ac-uk.zoom.us/j/89741634903?pwd=dzcxbU45NjAwQXo1dmlNMjR3V0lUUT09

Meeting ID: 897 4163 4903 Passcode: 539740

Refreshments will be available following the Seminar.

Add to your calendar or Include in your list

An ovine model for investigation of the microenvironment of the male mammary gland

Recent Publications - Sun, 12/05/2024 - 11:00

J Anat. 2024 May 12. doi: 10.1111/joa.14055. Online ahead of print.

ABSTRACT

The specific biology of the male breast remains relatively unexplored in spite of the increasing global prevalence of male breast cancer. Delineation of the microenvironment of the male breast is restricted by the low availability of human samples and a lack of characterisation of appropriate animal models. Unlike the mouse, the male ovine gland persists postnatally. We suggest that the male ovine mammary gland constitutes a promising adjunctive model for the male breast. In this study, we evaluate the male ovine mammary gland microenvironment, comparing intact and neutered males. Assessment of the glandular histo-anatomy highlights the resemblance of the male gland to that of neonatal female sheep and confirms the presence of rudimentary terminal duct lobular units. Irrespective of neutered status, cell proliferation in epithelial and stromal compartments is similarly low in males, and cell proliferation in epithelial cells and in the intralobular stroma is significantly lower than in pubertal female sheep. Between 42% and 72% of the luminal mammary epithelial cells in the male gland express the androgen receptor and expression is significantly reduced by neutering. Luminal epithelial cells within the intact and neutered male gland also express oestrogen receptor alpha, but minimal progesterone receptor expression is observed. The distribution of leukocytes within the ducts and stroma is similar to the mammary gland of female sheep and females of other species. Both macrophages and T lymphocytes are intercalated in the epithelial bilayer and are more abundant in the intralobular stroma than the interlobular stroma, suggesting that they may have a protective immunological function within the vestigial glandular tissue of the male sheep. Mast cells are also observed within the stroma. These cells cluster near the glandular tissue and are frequently located adjacent to blood vessels. The abundance of mast cells is significantly higher in intact males compared to neutered males, suggesting that hormone signalling may impact mast cell recruitment. In this study, we demonstrate the utility of the male ovine mammary gland as a model for furthering our knowledge of postnatal male mammary biology.

PMID:38735860 | DOI:10.1111/joa.14055