skip to content

An Interdisciplinary Research Centre at the University of Cambridge
 

Conference report: The first Bacterial Genome Sequencing Pan-European Network Conference

Sun, 01/09/2024 - 11:00

Microbes Infect. 2024 Aug 30:105410. doi: 10.1016/j.micinf.2024.105410. Online ahead of print.

NO ABSTRACT

PMID:39218348 | DOI:10.1016/j.micinf.2024.105410

PDE6A-Associated Retinitis Pigmentosa, Clinical Characteristics, Genetics and Natural History

Sun, 01/09/2024 - 11:00

Ophthalmol Retina. 2024 Aug 30:S2468-6530(24)00405-6. doi: 10.1016/j.oret.2024.08.018. Online ahead of print.

ABSTRACT

PURPOSE: To analyze the genetics, clinical characteristics, and natural history of PDE6A-associated retinitis pigmentosa.

DESIGN: Retrospective, longitudinal, observational cohort study.

PARTICIPANTS: Patients with molecularly confirmed PDE6A-associated retinal dystrophy in a single tertiary referral center.

METHODS: Review of medical records and retinal imaging, including fundus autofluorescence (FAF) imaging and spectral-domain optical coherence tomography (SD-OCT). Genetic results were reviewed, and the detected variants were assessed.

RESULTS: Sixteen patients (32 eyes) were identified and evaluated longitudinally. Genetic analysis identified 14 variants in the PDE6A gene, including 8 novel variants. The mean age (±SD, range) was 34.8 years (± 17.4, 12 - 76) at baseline, with a mean follow-up time of 4.8 years. Best-corrected visual acuity (BCVA) was 0.45 ± 0.45 LogMAR (range 0.0 - 1.6) at baseline and 0.65 ± 0.7 LogMAR (range 0.0 - 2.3) at the last visit. BCVA was similar among eyes in 88% of patients. A hyperautofluorescent ring was observed on FAF in 50% and 44% of the eyes at baseline and follow up visit respectively, with a mean area of 9.7 ± 4.5mm2 at baseline and mean of 8.6 ± 4.8 mm2 at the follow-up visit. Mean horizontal ellipsoid zone width (EZW) at baseline was 1765 ± 1093 μm, which decreased to 1580 ± 1077 μm at follow up. Eighteen eyes exhibited cystoid macular oedema at baseline (56%), and 17 eyes (53%) at follow-up. There were statistically significant changes during the follow-up period in terms of BCVA, hyperautoflouroscent ring area and the EZW.

CONCLUSIONS: This study highlights the natural history of PDE6A-retinopathy. The majority of the patients in this cohort had mild BCVA loss, and slowly progressive disease, based on FAF and OCT measurements.

PMID:39218074 | DOI:10.1016/j.oret.2024.08.018

Rab27a GTPase and its effector Myosin Va are host factors required for efficient Oropouche virus cell egress

Fri, 30/08/2024 - 11:00

PLoS Pathog. 2024 Aug 30;20(8):e1012504. doi: 10.1371/journal.ppat.1012504. Online ahead of print.

ABSTRACT

Oropouche fever, a debilitating illness common in South America, is caused by Oropouche virus (OROV), an arbovirus. OROV belongs to the Peribunyaviridae family, a large group of RNA viruses. Little is known about the biology of Peribunyaviridae in host cells, especially assembly and egress processes. Our research reveals that the small GTPase Rab27a mediates intracellular transport of OROV induced compartments and viral release from infected cells. We show that Rab27a interacts with OROV glycoproteins and colocalizes with OROV during late phases of the infection cycle. Moreover, Rab27a activity is required for OROV trafficking to the cell periphery and efficient release of infectious particles. Consistently, depleting Rab27a's downstream effector, Myosin Va, or inhibiting actin polymerization also hinders OROV compartments targeting to the cell periphery and infectious viral particle egress. These data indicate that OROV hijacks Rab27a activity for intracellular transport and cell externalization. Understanding these crucial mechanisms of OROV's replication cycle may offer potential targets for therapeutic interventions and aid in controlling the spread of Oropouche fever.

PMID:39213446 | DOI:10.1371/journal.ppat.1012504

Structural and Functional Basis of GenB2 Isomerase Activity from Gentamicin Biosynthesis

Thu, 29/08/2024 - 11:00

ACS Chem Biol. 2024 Aug 29. doi: 10.1021/acschembio.4c00334. Online ahead of print.

ABSTRACT

Aminoglycosides are essential antibiotics used to treat severe infections caused mainly by Gram-negative bacteria. Gentamicin is an aminoglycoside and, despite its toxicity, is clinically used to treat several pulmonary and urinary infections. The commercial form of gentamicin is a mixture of five compounds with minor differences in the methylation of one of their aminosugars. In the case of two compounds, gentamicin C2 and C2a, the only difference is the stereochemistry of the methyl group attached to C-6'. GenB2 is the enzyme responsible for this epimerization and is one of the four PLP-dependent enzymes encoded by the gentamicin biosynthetic gene cluster. Herein, we have determined the structure of GenB2 in its holo form in complex with PMP and also in the ternary complex with gentamicin X2 and G418, two substrate analogues. Based on the structural analysis, we were able to identify the structural basis for the catalytic mechanism of this enzyme, which was also studied by site-directed mutagenesis. Unprecedently, GenB2 is a PLP-dependent enzyme from fold I, which is able to catalyze an epimerization but with a mechanism distinct from that of fold III PLP-dependent epimerases using a cysteine residue near the N-terminus. The substitution of this cysteine residue for serine or alanine completely abolished the epimerase function of the enzyme, confirming its involvement. This study not only contributes to the understanding of the enzymology of gentamicin biosynthesis but also provides valuable details for exploring the enzymatic production of new aminoglycoside derivatives.

PMID:39207862 | DOI:10.1021/acschembio.4c00334

High-throughput transposon mutagenesis in the family Enterobacteriaceae reveals core essential genes and rapid turnover of essentiality

Thu, 29/08/2024 - 11:00

mBio. 2024 Aug 29:e0179824. doi: 10.1128/mbio.01798-24. Online ahead of print.

ABSTRACT

The Enterobacteriaceae are a scientifically and medically important clade of bacteria, containing the model organism Escherichia coli, as well as major human pathogens including Salmonella enterica and Klebsiella pneumoniae. Essential gene sets have been determined for several members of the Enterobacteriaceae, with the Keio E. coli single-gene deletion library often regarded as a gold standard. However, it remains unclear how gene essentiality varies between related strains and species. To investigate this, we have assembled a collection of 13 sequenced high-density transposon mutant libraries from five genera within the Enterobacteriaceae. We first assess several gene essentiality prediction approaches, investigate the effects of transposon density on essentiality prediction, and identify biases in transposon insertion sequencing data. Based on these investigations, we develop a new classifier for gene essentiality. Using this new classifier, we define a core essential genome in the Enterobacteriaceae of 201 universally essential genes. Despite the presence of a large cohort of variably essential genes, we find an absence of evidence for genus-specific essential genes. A clear example of this sporadic essentiality is given by the set of genes regulating the σE extracytoplasmic stress response, which appears to have independently acquired essentiality multiple times in the Enterobacteriaceae. Finally, we compare our essential gene sets to the natural experiment of gene loss in obligate insect endosymbionts that have emerged from within the Enterobacteriaceae. This isolates a remarkably small set of genes absolutely required for survival and identifies several instances of essential stress responses masked by redundancy in free-living bacteria.IMPORTANCEThe essential genome, that is the set of genes absolutely required to sustain life, is a core concept in genetics. Essential genes in bacteria serve as drug targets, put constraints on the engineering of biological chassis for technological or industrial purposes, and are key to constructing synthetic life. Despite decades of study, relatively little is known about how gene essentiality varies across related bacteria. In this study, we have collected gene essentiality data for 13 bacteria related to the model organism Escherichia coli, including several human pathogens, and investigated the conservation of essentiality. We find that approximately a third of the genes essential in any particular strain are non-essential in another related strain. Surprisingly, we do not find evidence for essential genes unique to specific genera; rather it appears a substantial fraction of the essential genome rapidly gains or loses essentiality during evolution. This suggests that essentiality is not an immutable characteristic but depends crucially on the genomic context. We illustrate this through a comparison of our essential genes in free-living bacteria to genes conserved in 34 insect endosymbionts with naturally reduced genomes, finding several cases where genes generally regarded as being important for specific stress responses appear to have become essential in endosymbionts due to a loss of functional redundancy in the genome.

PMID:39207104 | DOI:10.1128/mbio.01798-24

Selective Aurora A-TPX2 Interaction Inhibitors Have <em>In Vivo</em> Efficacy as Targeted Antimitotic Agents

Tue, 27/08/2024 - 11:00

J Med Chem. 2024 Aug 27. doi: 10.1021/acs.jmedchem.4c01165. Online ahead of print.

ABSTRACT

Aurora A kinase, a cell division regulator, is frequently overexpressed in various cancers, provoking genome instability and resistance to antimitotic chemotherapy. Localization and enzymatic activity of Aurora A are regulated by its interaction with the spindle assembly factor TPX2. We have used fragment-based, structure-guided lead discovery to develop small molecule inhibitors of the Aurora A-TPX2 protein-protein interaction (PPI). Our lead compound, CAM2602, inhibits Aurora A:TPX2 interaction, binding Aurora A with 19 nM affinity. CAM2602 exhibits oral bioavailability, causes pharmacodynamic biomarker modulation, and arrests the growth of tumor xenografts. CAM2602 acts by a novel mechanism compared to ATP-competitive inhibitors and is highly specific to Aurora A over Aurora B. Consistent with our finding that Aurora A overexpression drives taxane resistance, these inhibitors synergize with paclitaxel to suppress the outgrowth of pancreatic cancer cells. Our results provide a blueprint for targeting the Aurora A-TPX2 PPI for cancer therapy and suggest a promising clinical utility for this mode of action.

PMID:39190548 | DOI:10.1021/acs.jmedchem.4c01165

Metabolic specialization drives reduced pathogenicity in Pseudomonas aeruginosa isolates from cystic fibrosis patients

Fri, 23/08/2024 - 11:00

PLoS Biol. 2024 Aug 23;22(8):e3002781. doi: 10.1371/journal.pbio.3002781. Online ahead of print.

ABSTRACT

Metabolism provides the foundation for all cellular functions. During persistent infections, in adapted pathogenic bacteria metabolism functions radically differently compared with more naïve strains. Whether this is simply a necessary accommodation to the persistence phenotype or if metabolism plays a direct role in achieving persistence in the host is still unclear. Here, we characterize a convergent shift in metabolic function(s) linked with the persistence phenotype during Pseudomonas aeruginosa colonization in the airways of people with cystic fibrosis. We show that clinically relevant mutations in the key metabolic enzyme, pyruvate dehydrogenase, lead to a host-specialized metabolism together with a lower virulence and immune response recruitment. These changes in infection phenotype are mediated by impaired type III secretion system activity and by secretion of the antioxidant metabolite, pyruvate, respectively. Our results show how metabolic adaptations directly impinge on persistence and pathogenicity in this organism.

PMID:39178315 | DOI:10.1371/journal.pbio.3002781

Novel immunotherapeutics against LGR5 to target multiple cancer types

Wed, 21/08/2024 - 11:00

EMBO Mol Med. 2024 Aug 21. doi: 10.1038/s44321-024-00121-2. Online ahead of print.

ABSTRACT

We have developed and validated a highly specific, versatile antibody to the extracellular domain of human LGR5 (α-LGR5). α-LGR5 detects LGR5 overexpression in >90% of colorectal cancer (CRC), hepatocellular carcinoma (HCC) and pre-B-ALL tumour cells and was used to generate an Antibody-Drug Conjugate (α-LGR5-ADC), Bispecific T-cell Engager (α-LGR5-BiTE) and Chimeric Antigen Receptor (α-LGR5-CAR). α-LGR5-ADC was the most effective modality for targeting LGR5+ cancer cells in vitro and demonstrated potent anti-tumour efficacy in a murine model of human NALM6 pre-B-ALL driving tumour attrition to less than 1% of control treatment. α-LGR5-BiTE treatment was less effective in the pre-B-ALL cancer model yet promoted a twofold reduction in tumour burden. α-LGR5-CAR-T cells also showed specific and potent LGR5+ cancer cell killing in vitro and effective tumour targeting with a fourfold decrease in pre-B-ALL tumour burden relative to controls. Taken together, we show that α-LGR5 can not only be used as a research tool and a biomarker but also provides a versatile building block for a highly effective immune therapeutic portfolio targeting a range of LGR5-expressing cancer cells.

PMID:39169164 | DOI:10.1038/s44321-024-00121-2

Computational models for improving surveillance for the early detection of direct introduction of cassava brown streak disease in Nigeria

Wed, 21/08/2024 - 11:00

PLoS One. 2024 Aug 21;19(8):e0304656. doi: 10.1371/journal.pone.0304656. eCollection 2024.

ABSTRACT

Cassava is a key source of calories for smallholder farmers in sub-Saharan Africa but its role as a food security crop is threatened by the cross-continental spread of cassava brown streak disease (CBSD) that causes high yield losses. In order to mitigate the impact of CBSD, it is important to minimise the delay in first detection of CBSD after introduction to a new country or state so that interventions can be deployed more effectively. Using a computational model that combines simulations of CBSD spread at both the landscape and field scales, we model the effectiveness of different country level survey strategies in Nigeria when CBSD is directly introduced. We find that the main limitation to the rapid CBSD detection in Nigeria, using the current survey strategy, is that an insufficient number of fields are surveyed in newly infected Nigerian states, not the total number of fields surveyed across the country, nor the limitation of only surveying fields near a road. We explored different strategies for geographically selecting fields to survey and found that early and consistent CBSD detection will involve confining candidate survey fields to states where CBSD has not yet been detected and where survey locations are allocated in proportion to the density of cassava crops, detects CBSD sooner, more consistently, and when the epidemic is smaller compared with distributing surveys uniformly across Nigeria.

PMID:39167618 | DOI:10.1371/journal.pone.0304656

Strain-specific differences in the interactions of the cucumber mosaic virus 2b protein with the viral 1a and host Argonaute 1 proteins

Tue, 20/08/2024 - 11:00

J Virol. 2024 Aug 20:e0099324. doi: 10.1128/jvi.00993-24. Online ahead of print.

ABSTRACT

The cucumber mosaic virus (CMV) 2b protein is a potent counter-defense factor and symptom determinant that inhibits antiviral silencing by titrating short double-stranded RNAs. Expression of the CMV subgroup IA strain Fny-CMV 2b protein in transgenic Arabidopsis thaliana plants disrupts microRNA-mediated cleavage of host mRNAs by binding Argonaute 1 (AGO1), leading to symptom-like phenotypes. This also triggers AGO2-mediated antiviral resistance and resistance to CMV's aphid vectors. However, in authentic viral infections, the Fny-CMV 1a protein modulates 2b-AGO1 interactions, inhibiting induction of AGO2-mediated virus resistance and aphid resistance. Contrastingly, 2b proteins encoded by the subgroup II strain LS-CMV and the recently discovered subgroup IA strain Ho-CMV induce no symptoms. Confocal laser scanning microscopy, bimolecular fluorescence complementation, and co-immunoprecipitation showed that Fny-CMV and Ho-CMV 2b proteins interact with Fny-CMV and LS-CMV 1a proteins, while the CMV-LS 2b protein cannot. However, Fny-CMV, Ho-CMV, and LS-CMV 2b proteins, all interacted with AGO1, but while AGO1-Fny2b complexes occurred in the nucleus and cytoplasm, corresponding AGO1-2b complexes for LS-CMV and Ho-CMV accumulated almost exclusively in nuclei. AGO2 transcript accumulation was used to assess the inhibition of AGO1-mediated mRNA degradation. Fny-CMV 2b induced a fivefold increase in AGO2 accumulation, but LS-CMV and Ho-CMV 2b proteins induced only twofold increases. Thus, these 2b proteins bind AGO1 but are less effective at inhibiting AGO1 activity. We conclude that the intracellular localization of 2b-AGO1 complexes influences the degree to which a 2b protein inhibits microRNA-mediated host mRNA degradation and that cytoplasmic AGO1 has the strongest influence on miRNA-mediated cellular mRNA turnover.

IMPORTANCE: The cucumber mosaic virus (CMV) 2b protein was among the first discovered viral suppressors of RNA silencing. It has additional pro-viral functions through effects on plant defensive signaling pathways mediated by salicylic acid and jasmonic acid, the abscisic acid pathway and virus-induced drought resistance, and on host plant interactions with insect vectors. Many of these effects occur due to interaction with the important host RNA silencing component Argonaute 1 (AGO1). It was thought that only 2b proteins of "severe" CMV strains interacted with AGO1 and inhibited its microRNA-mediated "slicing" of cellular mRNAs and that the lack of interaction with AGO1 explained the moderate symptoms typically seen in plants infected with mild CMV strains. Our work overthrows this paradigm by showing that mild strain CMV 2b proteins can interact with AGO1, but their in vivo localization prevents them from interacting with AGO1 molecules present in the infected cell cytoplasm.

PMID:39162432 | DOI:10.1128/jvi.00993-24

Commuting-driven competition between transmission chains shapes seasonal influenza virus epidemics in the United States

Fri, 16/08/2024 - 11:00

medRxiv [Preprint]. 2024 Aug 9:2024.08.09.24311720. doi: 10.1101/2024.08.09.24311720.

ABSTRACT

Despite intensive study, much remains unknown about the dynamics of seasonal influenza virus epidemic establishment and spread in the United States (US) each season. By reconstructing transmission lineages from seasonal influenza virus genomes collected in the US from 2014 to 2023, we show that most epidemics consisted of multiple distinct transmission lineages. Spread of these lineages exhibited strong spatiotemporal hierarchies and lineage size was correlated with timing of lineage establishment in the US. Mechanistic epidemic simulations suggest that mobility-driven competition between lineages determined the extent of individual lineages' geographical spread. Based on phylogeographic analyses and epidemic simulations, lineage-specific movement patterns were dominated by human commuting behavior. These results suggest that given the locations of early-season epidemic sparks, the topology of inter-state human mobility yields repeatable patterns of which influenza viruses will circulate where, but the importance of short-term processes limits predictability of regional and national epidemics.

PMID:39148829 | PMC:PMC11326338 | DOI:10.1101/2024.08.09.24311720

On synergy between ultrahigh throughput screening and machine learning in biocatalyst engineering

Mon, 12/08/2024 - 11:00

Faraday Discuss. 2024 Aug 12. doi: 10.1039/d4fd00065j. Online ahead of print.

ABSTRACT

Protein design and directed evolution have separately contributed enormously to protein engineering. Without being mutually exclusive, the former relies on computation from first principles, while the latter is a combinatorial approach based on chance. Advances in ultrahigh throughput (uHT) screening, next generation sequencing and machine learning may create alternative routes to engineered proteins, where functional information linked to specific sequences is interpreted and extrapolated in silico. In particular, the miniaturisation of functional tests in water-in-oil emulsion droplets with picoliter volumes and their rapid generation and analysis (>1 kHz) allows screening of >107-membered libraries in a day. Subsequently, decoding the selected clones by short or long-read sequencing methods leads to large sequence-function datasets that may allow extrapolation from experimental directed evolution to further improved mutants beyond the observed hits. In this work, we explore experimental strategies for how to draw up 'fitness landscapes' in sequence space with uHT droplet microfluidics, review the current state of AI/ML in enzyme engineering and discuss how uHT datasets may be combined with AI/ML to make meaningful predictions and accelerate biocatalyst engineering.

PMID:39133073 | DOI:10.1039/d4fd00065j

Using old laboratory equipment with modern Web-of-Things standards: a smart laboratory with LabThings Retro

Thu, 08/08/2024 - 11:00

R Soc Open Sci. 2024 Aug 7;11(8):240634. doi: 10.1098/rsos.240634. eCollection 2024 Aug.

ABSTRACT

There has been an increasing, and welcome, open hardware trend towards science teams building and sharing their designs for new instruments. These devices, often built upon low-cost microprocessors and microcontrollers, can be readily connected to enable complex, automated and smart experiments. When designed to use open communication web standards, devices from different laboratories and manufacturers can be controlled using a single protocol and even communicate with each other. However, science labs still have a majority of old, perfectly functional equipment which tends to use older, and sometimes proprietary, standards for communications. In order to encourage the continued and integrated use of this equipment in modern automated experiments, we develop and demonstrate LabThings Retro. This allows us to retrofit old instruments to use modern Web-of-Things standards, which we demonstrate with closed-loop feedback involving an optical microscope, digital imaging and fluid pumping.

PMID:39113767 | PMC:PMC11304333 | DOI:10.1098/rsos.240634

Lack of prion transmission barrier in human PrP transgenic Drosophila

Thu, 01/08/2024 - 11:00

J Biol Chem. 2024 Jul 30:107617. doi: 10.1016/j.jbc.2024.107617. Online ahead of print.

ABSTRACT

While animal prion diseases are a threat to human health, their zoonotic potential is generally inefficient because of interspecies prion transmission barriers. New animal models are required to provide an understanding of these prion transmission barriers and to assess the zoonotic potential of animal prion diseases. To address this goal, we generated Drosophila transgenic for human or non-human primate PrP and determined their susceptibility to known pathogenic prion diseases, namely vCJD and classical BSE, and that with unknown pathogenic potential, namely CWD. Adult Drosophila transgenic for M129 or V129 human PrP, or non-human primate PrP developed a neurotoxic phenotype and showed an accelerated loss of survival after exposure to vCJD, classical BSE, or CWD prions at the larval stage. vCJD prion strain identity was retained after passage in both M129 and V129 human PrP Drosophila. All of the primate PrP fly lines accumulated prion seeding activity and concomitantly developed a neurotoxic phenotype, generally including accelerated loss of survival, after exposure to CWD prions derived from different cervid species, including North American white-tailed deer and muntjac, and European reindeer and moose. These novel studies show that primate PrP transgenic Drosophila lack known prion transmission barriers since, in mammalian hosts, V129 human PrP is associated with severe resistance to classical BSE prions, while both human and cynomolgus macaque PrP are associated with resistance to CWD prions. Significantly, our data suggest that interspecies differences in the amino acid sequence of PrP may not be a principal determinant of the prion transmission barrier.

PMID:39089583 | DOI:10.1016/j.jbc.2024.107617

Antigenic cartography using variant-specific hamster sera reveals substantial antigenic variation among Omicron subvariants

Tue, 30/07/2024 - 11:00

Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2310917121. doi: 10.1073/pnas.2310917121. Epub 2024 Jul 30.

ABSTRACT

Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) has developed substantial antigenic variability. As the majority of the population now has pre-existing immunity due to infection or vaccination, the use of experimentally generated animal immune sera can be valuable for measuring antigenic differences between virus variants. Here, we immunized Syrian hamsters by two successive infections with one of nine SARS-CoV-2 variants. Their sera were titrated against 16 SARS-CoV-2 variants, and the resulting titers were visualized using antigenic cartography. The antigenic map shows a condensed cluster containing all pre-Omicron variants (D614G, Alpha, Delta, Beta, Mu, and an engineered B.1+E484K variant) and considerably more diversity among a selected panel of Omicron subvariants (BA.1, BA.2, BA.4/BA.5, the BA.5 descendants BF.7 and BQ.1.18, the BA.2.75 descendant BN.1.3.1, the BA.2-derived recombinants XBB.2 and EG.5.1, and the BA.2.86 descendant JN.1). Some Omicron subvariants were as antigenically distinct from each other as the wildtype is from the Omicron BA.1 variant. Compared to titers measured in human sera, titers in hamster sera are of higher magnitude, show less fold change, and result in a more compact antigenic map topology. The results highlight the potential of sera from hamsters for the continued antigenic characterization of SARS-CoV-2.

PMID:39078681 | DOI:10.1073/pnas.2310917121

Engineered Resistance to Tobamoviruses

Sat, 27/07/2024 - 11:00

Viruses. 2024 Jun 22;16(7):1007. doi: 10.3390/v16071007.

ABSTRACT

Tobacco mosaic virus (TMV) was the first virus to be studied in detail and, for many years, TMV and other tobamoviruses, particularly tomato mosaic virus (ToMV) and tobamoviruses infecting pepper (Capsicum spp.), were serious crop pathogens. By the end of the twentieth and for the first decade of the twenty-first century, tobamoviruses were under some degree of control due to introgression of resistance genes into commercial tomato and pepper lines. However, tobamoviruses remained important models for molecular biology, biotechnology and bio-nanotechnology. Recently, tobamoviruses have again become serious crop pathogens due to the advent of tomato brown rugose fruit virus, which overcomes tomato resistance against TMV and ToMV, and the slow but apparently inexorable worldwide spread of cucumber green mottle mosaic virus, which threatens all cucurbit crops. This review discusses a range of mainly molecular biology-based approaches for protecting crops against tobamoviruses. These include cross-protection (using mild tobamovirus strains to 'immunize' plants against severe strains), expressing viral gene products in transgenic plants to inhibit the viral infection cycle, inducing RNA silencing against tobamoviruses by expressing virus-derived RNA sequences in planta or by direct application of double-stranded RNA molecules to non-engineered plants, gene editing of host susceptibility factors, and the transfer and optimization of natural resistance genes.

PMID:39066170 | DOI:10.3390/v16071007

Likelihood-based interactive local docking into cryo-EM maps in ChimeraX

Fri, 26/07/2024 - 11:00

Acta Crystallogr D Struct Biol. 2024 Aug 1. doi: 10.1107/S2059798324006776. Online ahead of print.

ABSTRACT

The interpretation of cryo-EM maps often includes the docking of known or predicted structures of the components, which is particularly useful when the map resolution is worse than 4 Å. Although it can be effective to search the entire map to find the best placement of a component, the process can be slow when the maps are large. However, frequently there is a well-founded hypothesis about where particular components are located. In such cases, a local search using a map subvolume will be much faster because the search volume is smaller, and more sensitive because optimizing the search volume for the rotation-search step enhances the signal to noise. A Fourier-space likelihood-based local search approach, based on the previously published em_placement software, has been implemented in the new emplace_local program. Tests confirm that the local search approach enhances the speed and sensitivity of the computations. An interactive graphical interface in the ChimeraX molecular-graphics program provides a convenient way to set up and evaluate docking calculations, particularly in defining the part of the map into which the components should be placed.

PMID:39058381 | DOI:10.1107/S2059798324006776

The Triterpenoid MOMORDIN-Ic Inhibits HCMV by Preventing the Initiation of Gene Expression in Eukaryotic Cells

Fri, 26/07/2024 - 11:00

Pathogens. 2024 Jun 28;13(7):546. doi: 10.3390/pathogens13070546.

ABSTRACT

Human cytomegalovirus (HCMV) primary infection, re-infection, and reactivation from latency cause morbidity in immune-compromised patients. Consequently, potential therapeutic strategies remain of interest for the treatment of infection. Naturally occurring triterpenoids derived from plants have been demonstrated to have anti-viral activity, although their precise mechanisms of action are not always fully understood. Here, we investigate the activity of Mormordin Ic (Mc) and demonstrate that it is potently anti-viral against HCMV. Through investigation of the mechanistic basis of this anti-viral activity, we identify that it is inhibitory to both viral and host gene expression, and to highly induced genes in particular. We go on to observe that Mc impacts on RNA Pol II activity and, specifically, reduces the occupancy of elongating RNA Pol II at a viral promoter. Next, we demonstrate that Mc is inhibitory to HCMV reactivation, and in doing so identify that it has greater activity against the canonical major immediate early promoter compared to the alternative ip2 promoter located downstream. Finally, we see evidence of RNA Pol II occupancy at the ip2 promoter in undifferentiated myeloid cells. Thus, Mc is potently anti-viral and a potential tool to probe the activity of multiple promoters considered important for controlling HCMV reactivation.

PMID:39057773 | DOI:10.3390/pathogens13070546

Lipidomic Risk Score to Enhance Cardiovascular Risk Stratification for Primary Prevention

Wed, 24/07/2024 - 11:00

J Am Coll Cardiol. 2024 Jul 30;84(5):434-446. doi: 10.1016/j.jacc.2024.04.060.

ABSTRACT

BACKGROUND: Accurate risk stratification is vital for primary prevention of cardiovascular disease (CVD). However, traditional tools such as the Framingham Risk Score (FRS) may underperform within the diverse intermediate-risk group, which includes individuals requiring distinct management strategies.

OBJECTIVES: This study aimed to develop a lipidomic-enhanced risk score (LRS), specifically targeting risk prediction and reclassification within the intermediate group, benchmarked against the FRS.

METHODS: The LRS was developed via a machine learning workflow using ridge regression on the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab; n = 10,339). It was externally validated with the Busselton Health Study (n = 4,492), and its predictive utility for coronary artery calcium scoring (CACS)-based outcomes was independently validated in the BioHEART cohort (n = 994).

RESULTS: LRS significantly improved discrimination metrics for the intermediate-risk group in both AusDiab and Busselton Health Study cohorts (all P < 0.001), increasing the area under the curve for CVD events by 0.114 (95% CI: 0.1123-0.1157) and 0.077 (95% CI: 0.0755-0.0785), with a net reclassification improvement of 0.36 (95% CI: 0.21-0.51) and 0.33 (95% CI: 0.15-0.49), respectively. For CACS-based outcomes in BioHEART, LRS achieved a significant area under the curve improvement of 0.02 over the FRS (0.76 vs 0.74; P < 1.0 × 10-5). A simplified, clinically applicable version of LRS was also created that had comparable performance to the original LRS.

CONCLUSIONS: LRS, augmenting the FRS, presents potential to improve intermediate-risk stratification and to predict atherosclerotic markers using a simple blood test, suitable for clinical application. This could facilitate the triage of individuals for noninvasive imaging such as CACS, fostering precision medicine in CVD prevention and management.

PMID:39048275 | DOI:10.1016/j.jacc.2024.04.060

Staphylococcus aureus associated with surgical site infections in Western Kenya reveals genomic hotspots for pathogen evolution

Wed, 24/07/2024 - 11:00

Access Microbiol. 2024 Jun 27;6(6):000734.v4. doi: 10.1099/acmi.0.000734.v4. eCollection 2024.

ABSTRACT

Objectives. Staphylococcus aureus is one of the most common pathogens attributed to hospital infections. Although S. aureus infections have been well studied in developed countries, far less is known about the biology of the pathogen in sub-Saharan Africa. Methods. Here, we report on the isolation, antibiotic resistance profiling, whole genome sequencing, and genome comparison of six multi-drug resistant isolates of S. aureus obtained from a referral hospital in Kakamega, Western Kenya. Results. Five of the six isolates contained a 20.7 kb circular plasmid carrying blaZ (associated with resistance to β-lactam antibiotics). These five strains all belonged to the same sequence type, ST152. Despite the similarity of the plasmid in these isolates, whole genome sequencing revealed that the strains differed, depending on whether they were associated with hospital-acquired or community-acquired infections. Conclusion. The intriguing finding is that the hospital-acquired and the community-acquired isolates of S. aureus belonging to the same genotype, ST152, formed two separate sub-clusters in the phylogenetic tree and differed by the repertoire of accessory virulence genes. These data suggest ongoing adaptive evolution and significant genomic plasticity.

PMID:39045253 | PMC:PMC11261728 | DOI:10.1099/acmi.0.000734.v4