skip to content

An Interdisciplinary Research Centre at the University of Cambridge

Hyperphosphorylated tau self-assembles into amorphous aggregates eliciting TLR4-dependent responses

Mon, 16/05/2022 - 11:00

Nat Commun. 2022 May 16;13(1):2692. doi: 10.1038/s41467-022-30461-x.


Soluble aggregates of the microtubule-associated protein tau have been challenging to assemble and characterize, despite their important role in the development of tauopathies. We found that sequential hyperphosphorylation by protein kinase A in conjugation with either glycogen synthase kinase 3β or stress activated protein kinase 4 enabled recombinant wild-type tau of isoform 0N4R to spontaneously polymerize into small amorphous aggregates in vitro. We employed tandem mass spectrometry to determine the phosphorylation sites, high-resolution native mass spectrometry to measure the degree of phosphorylation, and super-resolution microscopy and electron microscopy to characterize the morphology of aggregates formed. Functionally, compared with the unmodified aggregates, which require heparin induction to assemble, these self-assembled hyperphosphorylated tau aggregates more efficiently disrupt membrane bilayers and induce Toll-like receptor 4-dependent responses in human macrophages. Together, our results demonstrate that hyperphosphorylated tau aggregates are potentially damaging to cells, suggesting a mechanism for how hyperphosphorylation could drive neuroinflammation in tauopathies.

PMID:35577786 | DOI:10.1038/s41467-022-30461-x

In silico analysis of mutations near S1/S2 cleavage site in SARS-CoV-2 spike protein reveals increased propensity of glycosylation in Omicron strain

Mon, 16/05/2022 - 11:00

J Med Virol. 2022 May 16. doi: 10.1002/jmv.27845. Online ahead of print.


Cleavage of the Severe Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) spike protein has been demonstrated to contribute to viral-cell fusion and syncytia formation. Studies have shown that variants of concern (VOC) and variants of interest (VOI) show differing membrane fusion capacity. Mutations near cleavage motifs, such as the S1/S2 and S2' sites, may alter interactions with host proteases and, thus, the potential for fusion. The biochemical basis for the differences in interactions with host proteases for the VOC/VOI spike proteins has not yet been explored. Using sequence and structure-based bioinformatics, mutations near the VOC/VOI spike protein cleavage sites were inspected for their structural effects. All mutations found at the S1/S2 sites were predicted to increase affinity to the furin protease but not TMPRSS2. Mutations at the spike residue P681 in several strains, such P681R in the Delta strain, resulted in the disruption of a proline-directed kinase phosphorylation motif at the S1/S2 site, which may lessen the impact of phosphorylation for these variants. However, the unique N679K mutation in the Omicron strain was found to increase the propensity for O-linked glycosylation at the S1/S2 cleavage site, which may prevent recognition by proteases. Such glycosylation in the Omicron strain may hinder entry at the cell surface and, thus, decrease syncytia formation and induce cell entry through the endocytic pathway as has been shown in previous studies. Further experimental work is needed to confirm the effect of mutations and post-translational modifications on SARS-CoV-2 spike protein cleavage sites. This article is protected by copyright. All rights reserved.

PMID:35575289 | DOI:10.1002/jmv.27845

Secondary Complement Deficiency Impairs Anti-Microbial Immunity to <em>Klebsiella pneumoniae</em> and <em>Staphylococcus aureus</em> During Severe Acute COVID-19

Mon, 16/05/2022 - 11:00

Front Immunol. 2022 Apr 27;13:841759. doi: 10.3389/fimmu.2022.841759. eCollection 2022.


A high incidence of secondary Klebsiella pneumoniae and Staphylococcus aureus infection were observed in patients with severe COVID-19. The cause of this predisposition to infection is unclear. Our data demonstrate consumption of complement in acute COVID-19 patients reflected by low levels of C3, C4, and loss of haemolytic activity. Given that the elimination of Gram-negative bacteria depends in part on complement-mediated lysis, we hypothesised that secondary hypocomplementaemia is rendering the antibody-dependent classical pathway activation inactive and compromises serum bactericidal activity (SBA). 217 patients with severe COVID-19 were studied. 142 patients suffered secondary bacterial infections. Klebsiella species were the most common Gram-negative organism, found in 58 patients, while S. aureus was the dominant Gram-positive organism found in 22 patients. Hypocomplementaemia was observed in patients with acute severe COVID-19 but not in convalescent survivors three months after discharge. Sera from patients with acute COVID-19 were unable to opsonise either K. pneumoniae or S. aureus and had impaired complement-mediated killing of Klebsiella. We conclude that hyperactivation of complement during acute COVID-19 leads to secondary hypocomplementaemia and predisposes to opportunistic infections.

PMID:35572551 | PMC:PMC9094484 | DOI:10.3389/fimmu.2022.841759

End-to-End Deep Learning of Non-rigid Groupwise Registration and Reconstruction of Dynamic MRI

Mon, 16/05/2022 - 11:00

Front Cardiovasc Med. 2022 Apr 28;9:880186. doi: 10.3389/fcvm.2022.880186. eCollection 2022.


Temporal correlation has been exploited for accelerated dynamic MRI reconstruction. Some methods have modeled inter-frame motion into the reconstruction process to produce temporally aligned image series and higher reconstruction quality. However, traditional motion-compensated approaches requiring iterative optimization of registration and reconstruction are time-consuming, while most deep learning-based methods neglect motion in the reconstruction process. We propose an unrolled deep learning framework with each iteration consisting of a groupwise diffeomorphic registration network (GRN) and a motion-augmented reconstruction network. Specifically, the whole dynamic sequence is registered at once to an implicit template which is used to generate a new set of dynamic images to efficiently exploit the full temporal information of the acquired data via the GRN. The generated dynamic sequence is then incorporated into the reconstruction network to augment the reconstruction performance. The registration and reconstruction networks are optimized in an end-to-end fashion for simultaneous motion estimation and reconstruction of dynamic images. The effectiveness of the proposed method is validated in highly accelerated cardiac cine MRI by comparing with other state-of-the-art approaches.

PMID:35571217 | PMC:PMC9095964 | DOI:10.3389/fcvm.2022.880186

Factors Influencing Antibiotic Prescribing Behavior and Understanding of Antimicrobial Resistance Among Veterinarians in Assam, India

Fri, 13/05/2022 - 11:00

Front Vet Sci. 2022 Apr 26;9:864813. doi: 10.3389/fvets.2022.864813. eCollection 2022.


This study investigates factors influencing veterinarians' antibiotic prescribing behaviors and their understanding of antimicrobial resistance (AMR). The study used a telephone survey of 50 veterinarians conducted in five districts in Assam state, India. The survey sought information on the most prevalent animal diseases, veterinarians' awareness of potential preventive measures, including factors determining antimicrobial prescribing; the types of antimicrobials used for different health conditions in different species, and possible options to reduce antimicrobial use (AMU). The majority (86%) of respondents worked for the government, 98% reported having no written policy for the use of veterinary health products, and 58% have no on-site diagnostic facilities. Ceftriaxone, Enrofloxacin, and Oxytetracycline were the antibiotics (ABX) most frequently prescribed, by 76, 68, and 54% of veterinarians, respectively. These ABX were prescribed mainly for respiratory health problems and mastitis in cattle, and gastrointestinal infections in buffaloes, sheep, goat, and pigs. Severity of clinical symptoms, economic status of the livestock owner, and withdrawal period for ABX were ranked as very important factors for giving ABX. Less than two thirds (64%) were aware of the government ban for Colistin and only 2% were aware of a national plan for AMR. This study highlighted that ABX prescription is mostly based on tentative diagnosis given the lack of diagnostic facilities in most veterinary clinics. There is a need to enhance veterinary healthcare and to improve communication between policy makers and field veterinarians and, importantly, a need to disseminate clear prescribing guidelines on prudent AMU.

PMID:35558894 | PMC:PMC9087579 | DOI:10.3389/fvets.2022.864813

AMYPred-FRL is a novel approach for accurate prediction of amyloid proteins by using feature representation learning

Fri, 13/05/2022 - 11:00

Sci Rep. 2022 May 11;12(1):7697. doi: 10.1038/s41598-022-11897-z.


Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are prominently associated with common diseases such as type 2 diabetes, Alzheimer's disease, and Parkinson's disease. There are many types of amyloid proteins, and some proteins that form amyloid aggregates when in a misfolded state. It is difficult to identify such amyloid proteins and their pathogenic properties, but a new and effective approach is by developing effective bioinformatics tools. While several machine learning (ML)-based models for in silico identification of amyloid proteins have been proposed, their predictive performance is limited. In this study, we present AMYPred-FRL, a novel meta-predictor that uses a feature representation learning approach to achieve more accurate amyloid protein identification. AMYPred-FRL combined six well-known ML algorithms (extremely randomized tree, extreme gradient boosting, k-nearest neighbor, logistic regression, random forest, and support vector machine) with ten different sequence-based feature descriptors to generate 60 probabilistic features (PFs), as opposed to state-of-the-art methods developed by a single feature-based approach. A logistic regression recursive feature elimination (LR-RFE) method was used to find the optimal m number of 60 PFs in order to improve the predictive performance. Finally, using the meta-predictor approach, the 20 selected PFs were fed into a logistic regression method to create the final hybrid model (AMYPred-FRL). Both cross-validation and independent tests showed that AMYPred-FRL achieved superior predictive performance than its constituent baseline models. In an extensive independent test, AMYPred-FRL outperformed the existing methods by 5.5% and 16.1%, respectively, with accuracy and MCC of 0.873 and 0.710. To expedite high-throughput prediction, a user-friendly web server of AMYPred-FRL is freely available at . It is anticipated that AMYPred-FRL will be a useful tool in helping researchers to identify new amyloid proteins.

PMID:35546347 | DOI:10.1038/s41598-022-11897-z

A bioactive phlebovirus-like envelope protein in a hookworm endogenous virus

Wed, 11/05/2022 - 11:00

Sci Adv. 2022 May 13;8(19):eabj6894. doi: 10.1126/sciadv.abj6894. Epub 2022 May 11.


Endogenous viral elements (EVEs), accounting for 15% of our genome, serve as a genetic reservoir from which new genes can emerge. Nematode EVEs are particularly diverse and informative of virus evolution. We identify Atlas virus-an intact retrovirus-like EVE in the human hookworm Ancylostoma ceylanicum, with an envelope protein genetically related to GN-GC glycoproteins from the family Phenuiviridae. A cryo-EM structure of Atlas GC reveals a class II viral membrane fusion protein fold not previously seen in retroviruses. Atlas GC has the structural hallmarks of an active fusogen. Atlas GC trimers insert into membranes with endosomal lipid compositions and low pH. When expressed on the plasma membrane, Atlas GC has cell-cell fusion activity. With its preserved biological activities, Atlas GC has the potential to acquire a cellular function. Our work reveals structural plasticity in reverse-transcribing RNA viruses.

PMID:35544562 | DOI:10.1126/sciadv.abj6894

Emergence and dissemination of antimicrobial resistance in Escherichia coli causing bloodstream infections in Norway in 2002-17: a nationwide, longitudinal, microbial population genomic study

Wed, 11/05/2022 - 11:00

Lancet Microbe. 2021 Jul;2(7):e331-e341. doi: 10.1016/S2666-5247(21)00031-8. Epub 2021 May 10.


BACKGROUND: The clonal diversity underpinning trends in multidrug resistant Escherichia coli causing bloodstream infections remains uncertain. We aimed to determine the contribution of individual clones to resistance over time, using large-scale genomics-based molecular epidemiology.

METHODS: This was a longitudinal, E coli population, genomic, cohort study that sampled isolates from 22 512 E coli bloodstream infections included in the Norwegian surveillance programme on resistant microbes (NORM) from 2002 to 2017. 15 of 22 laboratories were able to share their isolates, and the first 22·5% of isolates from each year were requested. We used whole genome sequencing to infer the population structure (PopPUNK), and we investigated the clade composition of the dominant multidrug resistant clonal complex (CC)131 using genetic markers previously reported for sequence type (ST)131, effective population size (BEAST), and presence of determinants of antimicrobial resistance (ARIBA, PointFinder, and ResFinder databases) over time. We compared these features between the 2002-10 and 2011-17 time periods. We also compared our results with those of a longitudinal study from the UK done between 2001 and 2011.

FINDINGS: Of the 3500 isolates requested from the participating laboratories, 3397 (97·1%) were received, of which 3254 (95·8%) were successfully sequenced and included in the analysis. A significant increase in the number of multidrug resistant CC131 isolates from 71 (5·6%) of 1277 in 2002-10 to 207 (10·5%) of 1977 in 2011-17 (p<0·0001), was the largest clonal expansion. CC131 was the most common clone in extended-spectrum β-lactamase (ESBL)-positive isolates (75 [58·6%] of 128) and fluoroquinolone non-susceptible isolates (148 [39·2%] of 378). Within CC131, clade A increased in prevalence from 2002, whereas the global multidrug resistant clade C2 was not observed until 2007. Multiple de-novo acquisitions of both blaCTX-M ESBL-encoding genes in clades A and C1 and gain of phenotypic fluoroquinolone non-susceptibility across the clade A phylogeny were observed. We estimated that exponential increases in the effective population sizes of clades A, C1, and C2 occurred in the mid-2000s, and in clade B a decade earlier. The rate of increase in the estimated effective population size of clade A (Ne=3147) was nearly ten-times that of C2 (Ne=345), with clade A over-represented in Norwegian CC131 isolates (75 [27·0%] of 278) compared with the UK study (8 [5·4%] of 147 isolates).

INTERPRETATION: The early and sustained establishment of predominantly antimicrobial susceptible CC131 clade A isolates, relative to multidrug resistant clade C2 isolates, suggests that resistance is not necessary for clonal success. However, even in the low antibiotic use setting of Norway, resistance to important antimicrobial classes has rapidly been selected for in CC131 clade A isolates. This study shows the importance of genomic surveillance in uncovering the complex ecology underlying multidrug resistance dissemination and competition, which have implications for the design of strategies and interventions to control the spread of high-risk multidrug resistant clones.

FUNDING: Trond Mohn Foundation, European Research Council, Marie Skłodowska-Curie Actions, and the Wellcome Trust.

PMID:35544167 | DOI:10.1016/S2666-5247(21)00031-8

Structure-Based Discovery of Lipoteichoic Acid Synthase Inhibitors

Mon, 09/05/2022 - 11:00

J Chem Inf Model. 2022 May 9. doi: 10.1021/acs.jcim.2c00300. Online ahead of print.


Lipoteichoic acid synthase (LtaS) is a key enzyme for the cell wall biosynthesis of Gram-positive bacteria. Gram-positive bacteria that lack lipoteichoic acid (LTA) exhibit impaired cell division and growth defects. Thus, LtaS appears to be an attractive antimicrobial target. The pharmacology around LtaS remains largely unexplored with only two small-molecule LtaS inhibitors reported, namely "compound 1771" and the Congo red dye. Structure-based drug discovery efforts against LtaS remain unattempted due to the lack of an inhibitor-bound structure of LtaS. To address this, we combined the use of a molecular docking technique with molecular dynamics (MD) simulations to model a plausible binding mode of compound 1771 to the extracellular catalytic domain of LtaS (eLtaS). The model was validated using alanine mutagenesis studies combined with isothermal titration calorimetry. Additionally, lead optimization driven by our computational model resulted in an improved version of compound 1771, namely, compound 4 which showed greater affinity for binding to eLtaS than compound 1771 in biophysical assays. Compound 4 reduced LTA production in S. aureus dose-dependently, induced aberrant morphology as seen for LTA-deficient bacteria, and significantly reduced bacteria titers in the lung of mice infected with S. aureus. Analysis of our MD simulation trajectories revealed the possible formation of a transient cryptic pocket in eLtaS. Virtual screening (VS) against the cryptic pocket led to the identification of a new class of inhibitors that could potentiate β-lactams against methicillin-resistant S. aureus. Our overall workflow and data should encourage further drug design campaign against LtaS. Finally, our work reinforces the importance of considering protein conformational flexibility to a successful VS endeavor.

PMID:35533315 | DOI:10.1021/acs.jcim.2c00300

Loss of slc39a14 causes simultaneous manganese hypersensitivity and deficiency in zebrafish

Fri, 06/05/2022 - 11:00

Dis Model Mech. 2022 May 6:dmm.044594. doi: 10.1242/dmm.044594. Online ahead of print.


Manganese neurotoxicity is a hallmark of Hypermanganesemia with Dystonia 2, an inherited manganese transporter defect caused by mutations in SLC39A14. To identify novel potential targets of manganese neurotoxicity we performed transcriptome analysis of slc39a14-/- mutant zebrafish unexposed and exposed to MnCl2. Differentially expressed genes mapped to the central nervous system and eye, and pathway analysis suggested that calcium dyshomeostasis and activation of the unfolded protein response are key features of manganese neurotoxicity. Consistent with this interpretation, MnCl2 exposure led to decreased whole animal calcium levels, locomotor defects and changes in neuronal activity within the telencephalon and optic tectum. In accordance with reduced tectal activity, slc39a14-/- zebrafish showed changes in visual phototransduction gene expression, absence of visual background adaptation and a diminished optokinetic reflex. Finally, numerous differentially expressed genes in mutant larvae normalised upon MnCl2 treatment indicating that, in addition to neurotoxicity, manganese deficiency is present either subcellularly or in specific cells or tissues. Overall, we assembled a comprehensive set of genes that mediate manganese-systemic responses and found a highly correlated and modulated network associated with calcium dyshomeostasis and cellular stress.

PMID:35514229 | DOI:10.1242/dmm.044594

Mobility of antimicrobial resistance across serovars and disease presentations in non-typhoidal <em>Salmonella</em> from animals and humans in Vietnam

Thu, 05/05/2022 - 11:00

Microb Genom. 2022 May;8(5). doi: 10.1099/mgen.0.000798.


Non-typhoidal Salmonella (NTS) is a major cause of bacterial enterocolitis globally but also causes invasive bloodstream infections. Antimicrobial resistance (AMR) hampers the treatment of these infections and understanding how AMR spreads between NTS may help in developing effective strategies. We investigated NTS isolates associated with invasive disease, diarrhoeal disease and asymptomatic carriage in animals and humans from Vietnam. Isolates included multiple serovars and both common and rare phenotypic AMR profiles; long- and short-read sequencing was used to investigate the genetic mechanisms and genomic backgrounds associated with phenotypic AMR profiles. We demonstrate concordance between most AMR genotypes and phenotypes but identified large genotypic diversity in clinically relevant phenotypes and the high mobility potential of AMR genes (ARGs) in this setting. We found that 84 % of ARGs identified were located on plasmids, most commonly those containing IncHI1A_1 and IncHI1B(R27)_1_R27 replicons (33%), and those containing IncHI2_1 and IncHI2A_1 replicons (31%). The vast majority (95%) of ARGS were found within 10 kbp of IS6/IS26 elements, which provide plasmids with a mechanism to exchange ARGs between plasmids and other parts of the genome. Whole genome sequencing with targeted long-read sequencing applied in a One Health context identified a comparatively limited number of insertion sequences and plasmid replicons associated with AMR. Therefore, in the context of NTS from Vietnam and likely for other settings as well, the mechanisms by which ARGs move contribute to a more successful AMR profile than the specific ARGs, facilitating the adaptation of bacteria to different environments or selection pressures.

PMID:35511231 | DOI:10.1099/mgen.0.000798

Intermittent PI3Kδ inhibition sustains anti-tumour immunity and curbs irAEs

Wed, 04/05/2022 - 11:00

Nature. 2022 May 4. doi: 10.1038/s41586-022-04685-2. Online ahead of print.


Phosphoinositide 3-kinase δ (PI3Kδ) has a key role in lymphocytes, and inhibitors that target this PI3K have been approved for treatment of B cell malignancies1-3. Although studies in mouse models of solid tumours have demonstrated that PI3Kδ inhibitors (PI3Kδi) can induce anti-tumour immunity4,5, its effect on solid tumours in humans remains unclear. Here we assessed the effects of the PI3Kδi AMG319 in human patients with head and neck cancer in a neoadjuvant, double-blind, placebo-controlled randomized phase II trial (EudraCT no. 2014-004388-20). PI3Kδ inhibition decreased the number of tumour-infiltrating regulatory T (Treg) cells and enhanced the cytotoxic potential of tumour-infiltrating T cells. At the tested doses of AMG319, immune-related adverse events (irAEs) required treatment to be discontinued in 12 out of 21 of patients treated with AMG319, suggestive of systemic effects on Treg cells. Accordingly, in mouse models, PI3Kδi decreased the number of Treg cells systemically and caused colitis. Single-cell RNA-sequencing analysis revealed a PI3Kδi-driven loss of tissue-resident colonic ST2 Treg cells, accompanied by expansion of pathogenic T helper 17 (TH17) and type 17 CD8+ T (TC17) cells, which probably contributed to toxicity; this points towards a specific mode of action for the emergence of irAEs. A modified treatment regimen with intermittent dosing of PI3Kδi in mouse models led to a significant decrease in tumour growth without inducing pathogenic T cells in colonic tissue, indicating that alternative dosing regimens might limit toxicity.

PMID:35508656 | DOI:10.1038/s41586-022-04685-2

Synthetic biology and bioelectrochemical tools for electrogenetic system engineering

Wed, 04/05/2022 - 11:00

Sci Adv. 2022 May 6;8(18):eabm5091. doi: 10.1126/sciadv.abm5091. Epub 2022 May 4.


Synthetic biology research and its industrial applications rely on deterministic spatiotemporal control of gene expression. Recently, electrochemical control of gene expression has been demonstrated in electrogenetic systems (redox-responsive promoters used alongside redox inducers and electrodes), allowing for the direct integration of electronics with biological processes. However, the use of electrogenetic systems is limited by poor activity, tunability, and standardization. In this work, we developed a strong, unidirectional, redox-responsive promoter before deriving a mutant promoter library with a spectrum of strengths. We constructed genetic circuits with these parts and demonstrated their activation by multiple classes of redox molecules. Last, we demonstrated electrochemical activation of gene expression under aerobic conditions using a novel, modular bioelectrochemical device. These genetic and electrochemical tools facilitate the design and improve the performance of electrogenetic systems. Furthermore, the genetic design strategies used can be applied to other redox-responsive promoters to further expand the available tools for electrogenetics.

PMID:35507663 | DOI:10.1126/sciadv.abm5091

Crystal structures of BMPRII extracellular domain in binary and ternary receptor complexes with BMP10

Tue, 03/05/2022 - 11:00

Nat Commun. 2022 May 3;13(1):2395. doi: 10.1038/s41467-022-30111-2.


Heterozygous mutations in BMPR2 (bone morphogenetic protein (BMP) receptor type II) cause pulmonary arterial hypertension. BMPRII is a receptor for over 15 BMP ligands, but why BMPR2 mutations cause lung-specific pathology is unknown. To elucidate the molecular basis of BMP:BMPRII interactions, we report crystal structures of binary and ternary BMPRII receptor complexes with BMP10, which contain an ensemble of seven different BMP10:BMPRII 1:1 complexes. BMPRII binds BMP10 at the knuckle epitope, with the A-loop and β4 strand making BMPRII-specific interactions. The BMPRII binding surface on BMP10 is dynamic, and the affinity is weaker in the ternary complex than in the binary complex. Hydrophobic core and A-loop interactions are important in BMPRII-mediated signalling. Our data reveal how BMPRII is a low affinity receptor, implying that forming a signalling complex requires high concentrations of BMPRII, hence mutations will impact on tissues with highest BMPR2 expression such as the lung vasculature.

PMID:35504921 | DOI:10.1038/s41467-022-30111-2

Tracking SARS-CoV-2 mutations and variants through the COG-UK-Mutation Explorer

Tue, 03/05/2022 - 11:00

Virus Evol. 2022 Mar 18;8(1):veac023. doi: 10.1093/ve/veac023. eCollection 2022.


COG-UK Mutation Explorer (COG-UK-ME, accessed date 16 March 2022) is a web resource that displays knowledge and analyses on SARS-CoV-2 virus genome mutations and variants circulating in the UK, with a focus on the observed amino acid replacements that have an antigenic role in the context of the human humoral and cellular immune response. This analysis is based on more than 2 million genome sequences (as of March 2022) for UK SARS-CoV-2 data held in the CLIMB-COVID centralised data environment. COG-UK-ME curates these data and displays analyses that are cross-referenced to experimental data collated from the primary literature. The aim is to track mutations of immunological importance that are accumulating in current variants of concern and variants of interest that could alter the neutralising activity of monoclonal antibodies (mAbs), convalescent sera, and vaccines. Changes in epitopes recognised by T cells, including those where reduced T cell binding has been demonstrated, are reported. Mutations that have been shown to confer SARS-CoV-2 resistance to antiviral drugs are also included. Using visualisation tools, COG-UK-ME also allows users to identify the emergence of variants carrying mutations that could decrease the neutralising activity of both mAbs present in therapeutic cocktails, e.g. Ronapreve. COG-UK-ME tracks changes in the frequency of combinations of mutations and brings together the curated literature on the impact of those mutations on various functional aspects of the virus and therapeutics. Given the unpredictable nature of SARS-CoV-2 as exemplified by yet another variant of concern, Omicron, continued surveillance of SARS-CoV-2 remains imperative to monitor virus evolution linked to the efficacy of therapeutics.

PMID:35502202 | PMC:PMC9037374 | DOI:10.1093/ve/veac023

Beneath the surface: Amino acid variation underlying two decades of dengue virus antigenic dynamics in Bangkok, Thailand

Mon, 02/05/2022 - 11:00

PLoS Pathog. 2022 May 2;18(5):e1010500. doi: 10.1371/journal.ppat.1010500. Online ahead of print.


Neutralizing antibodies are important correlates of protection against dengue. Yet, determinants of variation in neutralization across strains within the four dengue virus serotypes (DENV1-4) is imperfectly understood. Studies focus on structural DENV proteins, especially the envelope (E), the primary target of anti-DENV antibodies. Although changes in immune recognition (antigenicity) are often attributed to variation in epitope residues, viral processes influencing conformation and epitope accessibility also affect neutralizability, suggesting possible modulating roles of nonstructural proteins. We estimated effects of residue changes in all 10 DENV proteins on antigenic distances between 348 DENV collected from individuals living in Bangkok, Thailand (1994-2014). Antigenic distances were derived from response of each virus to a panel of twenty non-human primate antisera. Across 100 estimations, excluding 10% of virus pairs each time, 77 of 295 positions with residue variability in E consistently conferred antigenic effects; 52 were within ±3 sites of known binding sites of neutralizing human monoclonal antibodies, exceeding expectations from random assignments of effects to sites (p = 0.037). Effects were also identified for 16 sites on the stem/anchor of E which were only recently shown to become exposed under physiological conditions. For all proteins, except nonstructural protein 2A (NS2A), root-mean-squared-error (RMSE) in predicting distances between pairs held out in each estimation did not outperform sequences of equal length derived from all proteins or E, suggesting that antigenic signals present were likely through linkage with E. Adjusted for E, we identified 62/219 sites embedding the excess signals in NS2A. Concatenating these sites to E additionally explained 3.4% to 4.0% of observed variance in antigenic distances from when E alone (50.5% to 50.8%); RMSE outperformed concatenating E with sites from any protein of the virus (ΔRMSE, 95%IQR: 0.01, 0.05). Our results support examining antigenic determinants beyond the DENV surface.

PMID:35500035 | DOI:10.1371/journal.ppat.1010500

Global spatial dynamics and vaccine-induced fitness changes of <em>Bordetella pertussis</em>

Wed, 27/04/2022 - 11:00

Sci Transl Med. 2022 Apr 27;14(642):eabn3253. doi: 10.1126/scitranslmed.abn3253. Epub 2022 Apr 27.


As with other pathogens, competitive interactions between Bordetella pertussis strains drive infection risk. Vaccines are thought to perturb strain diversity through shifts in immune pressures; however, this has rarely been measured because of inadequate data and analytical tools. We used 3344 sequences from 23 countries to show that, on average, there are 28.1 transmission chains circulating within a subnational region, with the number of chains strongly associated with host population size. It took 5 to 10 years for B. pertussis to be homogeneously distributed throughout Europe, with the same time frame required for the United States. Increased fitness of pertactin-deficient strains after implementation of acellular vaccines, but reduced fitness otherwise, can explain long-term genotype dynamics. These findings highlight the role of vaccine policy in shifting local diversity of a pathogen that is responsible for 160,000 deaths annually.

PMID:35476597 | DOI:10.1126/scitranslmed.abn3253

Vaginal Microbiota Diversity in Response to Lipopolysaccharide in Gilts Housed Under Three Housing Systems

Mon, 25/04/2022 - 11:00

Front Genet. 2022 Apr 8;13:836962. doi: 10.3389/fgene.2022.836962. eCollection 2022.


The United Kingdom and European Union have banned crates for pregnant sows. However, animals are kept in a restrictive environment for up to four weeks after mating, leading to stress and different responses of the animals' immune system. Here, we used vaginal flushing of gilts to investigate whether housing systems or an experimental inflammatory challenge with lipopolysaccharide (LPS) can modify the gilt vaginal microbiome. Alpha-diversity indices showed differences in the microbiota of gilts housed under different systems (q = 0.04). Shannon alpha-diversity richness was higher in gilts group-housed in pens than in gilts housed in crates (q = 0.035), but not higher than in other groups. The relative abundance of the operational taxonomic unit (OTU) (q < 0.05) revealed specific differences in housing systems before a LPS or saline (SAL control) challenge. We found different abundances in taxa of Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and Proteobacteria in gilts housed in the different systems before challenge. After the LPS challenge, significant differences were detected in the relative abundance of OTUs (q < 0.05) for the LPS-challenged group compared with SAL animals for each housing system. The phylum Staphylococcus showed higher abundance among the LPS-challenged gilts than in SAL-challenged animals. Furthermore, Enterobacter was more abundant in the LPS-challenged gilts housed in crates than in SAL-challenged gilts housed in crates. Streptococcus suis, Conchiformibius, Globicatella and Actinobacillus were more abundant in LPS-challenged gilts in indoor group housing than in SAL gilts in the same housing system. Gilts kept outdoors did not show changes in vaginal microbiota after an LPS challenge. Gilts housed in crates showed clinical signs of urogenital infection, whereas gilts housed outdoors and in indoor group housing did not. The relationship between environment, immune response, and microbiota suggested that animals in a poor environments experience difficulties responding to a challenge and their vaginal microbiota is altered as a consequence, with decreased richness of normal vaginal microbiota, and increased opportunistic bacteria. Welfare indicators measured by gilts' responses to housing systems however, do not fully explain mechanisms associated with the unique signature in vaginal microbiota encountered in the different housing systems.

PMID:35464863 | PMC:PMC9024362 | DOI:10.3389/fgene.2022.836962

Tuning riboflavin derivatives for photodynamic inactivation of pathogens

Fri, 22/04/2022 - 11:00

Sci Rep. 2022 Apr 21;12(1):6580. doi: 10.1038/s41598-022-10394-7.


The development of effective pathogen reduction strategies is required due to the rise in antibiotic-resistant bacteria and zoonotic viral pandemics. Photodynamic inactivation (PDI) of bacteria and viruses is a potent reduction strategy that bypasses typical resistance mechanisms. Naturally occurring riboflavin has been widely used in PDI applications due to efficient light-induced reactive oxygen species (ROS) release. By rational design of its core structure to alter (photo)physical properties, we obtained derivatives capable of outperforming riboflavin's visible light-induced PDI against E. coli and a SARS-CoV-2 surrogate, revealing functional group dependency for each pathogen. Bacterial PDI was influenced mainly by guanidino substitution, whereas viral PDI increased through bromination of the flavin. These observations were related to enhanced uptake and ROS-specific nucleic acid cleavage mechanisms. Trends in the derivatives' toxicity towards human fibroblast cells were also investigated to assess viable therapeutic derivatives and help guide further design of PDI agents to combat pathogenic organisms.

PMID:35449377 | DOI:10.1038/s41598-022-10394-7

Author Correction: Droplet microfluidics for the highly controlled synthesis of branched gold nanoparticles

Fri, 22/04/2022 - 11:00

Sci Rep. 2022 Apr 21;12(1):6559. doi: 10.1038/s41598-022-10761-4.


PMID:35449184 | DOI:10.1038/s41598-022-10761-4