skip to primary navigationskip to content
 

Host-Pathogen Interactions

Immunity and infection research is closely intertwined at the University, and

S.typhimurium
Two human Mel-Juso cells infected with GFP-expressing Salmonella typhimurium (green), which are seen replicating in vacuoles within the cells which accumulate and induce tubular projections of CD1B-positive compartments (white). (James Hutchinson, Dept. of Pathology)
includes a number of research groups and programmes:

Recent highlights include:

People specializing in this area

Steering Committee

Professor Jim Kaufman

diseases of poultry (primarily viral diseases of chickens); Devil Facial Transmissible Tumour (a transmissible tumour of Tasmanian devils)

Principal Investigators

Dr Francis Jiggins

The evolution of resistance to infection in insects

Professor Jim Kaufman

diseases of poultry (primarily viral diseases of chickens); Devil Facial Transmissible Tumour (a transmissible tumour of Tasmanian devils)

Dr Tom Monie

My research is interested in the innate immune response, the primary defense mechanism of the body against infection and danger. In particular I am working to understand how proteins known as pattern recognition receptors are activated by molecular danger signals, and how these signals are passed on in the cell to start an immune response. Most of my current work focuses on the NOD-like receptor (NLR) family members NOD1 and NOD2. Both NOD1 and NOD2 are found in the cytoplasm of cells. They detect fragments of peptidoglycan from the cell wall of both Gram positive and Gram negative bacteria and initiate a pro-inflammatory immune response. My research is currently focusing on the following areas of NOD1 and NOD2 biology:

  • Ligand binding - NOD1 and NOD2 bind their ligands directly. I am investigating exactly how they do this and whether this is different in other species such as zebrafish.
  • Mechanisms of signal transduction - Following activation of NOD1 and NOD2 signal transduction happens as a result of protein-protein interactions with adaptor proteins. I am interested in understanding what these interactions are and whether they can be disrupted for therapeutic purposes.
  • The impact of polymorphisms - a number of single nucleotide polymorphisms (mutations) in NOD2 have been identified as susceptibility markers for Crohn's Disease, whilst others cause the genetic condition Blau Syndrome. Part of my work is assessing the functional and structural impact of these polymorphisms to better understand how they cause disease.
  • NLR regulation - dietary and microbial compounds can alter the behaviour of pattern recognition receptors and are an interesting area of current study.
  • NLR evolution - comparative sequence analysis between different species is being used to identify and investigate very important amino acids in the function of NLR proteins.

To perform these studies a range of biochemical, cell-based, biophysical and structural techniques are used. In addition computational biology and protein homology modelling forms an ever expanding area of research interest. I am always keen to develop new collaborations.